期刊文献+

考虑模糊转移时间且允许缺货的缺陷生产模型

Imperfect Production Model with Fuzzy Elapsed Time and Backorder
下载PDF
导出
摘要 考虑到生产设备的不可靠,研究了含模糊生产故障时间且允许缺货的EPQ模型,建立了含缺货成本和模糊生产故障时间的费用模型,揭示了费用函数的性质。基于此,设计了最优生产策略的二分法求解过程。结合算例分析了重修费用和缺陷产品比例对最优生产策略的影响。结果表明:随着重修费用和缺陷率的增大,最优生产时间越短,最优成本越大。 Economic production quantity model with fuzzy deteriorating process and allowable shortage is investigated for the unreliability of production facility. The total cost per unit time function with shortage cost and fuzzy elapsed time out of control state is developed. Some properties of the cost function are revealed. Based on these properties, bisection method for the optimal production policy is designed. The effects of the rework cost and the imperfect rate on the optimal production policy is illustrated with numerical example. Results show that when repair cost and the defective rate increases, the total unit time cost increase while optimal production run length decreases.
出处 《青岛大学学报(自然科学版)》 CAS 2009年第4期103-107,共5页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金项目(70671056) 山东省自然科学基金项目(Y2008H07) 青岛大学优秀研究生学位论文培育项目
关键词 模糊变量 缺陷生产过程 允许缺货 经济生产模型 Fuzzy variable imperfect production process backorder economic production quantity
  • 相关文献

参考文献7

  • 1Chen C, Lo C, Liao Y. Optimal lot size with learning consideration on an imperfect production system with allowable shortages [J]. International Journal of Production Economics. 2008, 113(1): 459-469.
  • 2Chung K, Hou K. An optimal production run time with imperfect production processes and allowable shortages [J]. Computers and Operations Research. 2003, (30): 483-490.
  • 3Kim C, Hong Y. An optimal production run length in deteriorating production processes [J]. International Journal of Production Economics. 1999(58) : 183 - 189.
  • 4Wang X, Tang W. Optimal production run length in deteriorating production processes with fuzzy elapsed time [J]. Computers &. Industrial Engineering [J]. 2009, 56(4): 1627-1632.
  • 5Liu B, Liu Y. Excepted value of fuzzy variable and fuzzy expected value models [J]. IEEE Transactions on Fuzzy Systems. 2002(10): 445-450.
  • 6Liu B. Theory and practice of uncertain programming[M]. Heidelberg:Physica Verlag. 2002.
  • 7Nahmias S. Fuzzy variables [J]. Fuzzy Sets and Systems. 1978(1): 97 - 110.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部