期刊文献+

基于自由分布式FDR假设检验阈值算法的信号去噪

Signal denoising based on threshold algorithm of free distributed FDR hypotheses testing
下载PDF
导出
摘要 在小波阈值去噪算法中存在的主要问题是阈值的设定和阈值函数的选取。Donoho提出的通用阈值在实际的应用中效果并不十分理想。利用统计学中的自由分布式错误发现率假设检验方法来设定阈值,使得该阈值不依赖于信号的长度,并在软阈值函数和硬阈值函数的基础上提出一种改进型阈值函数。仿真结果表明,与Donoho提出的小波阈值去噪算法相比,该算法具有更好的去噪性能。 The main problem of wavelet threshold denoising algorithm is threshold setting and threshold function selection. The universal threshold proposed by Donoho is not very ideal in practice. According to the method of free distributed False Discovery Rate hypotheses testing in statistics, the threshold is set and it does not depend on the length of signal. Moreover, a modified threshold function is proposed on the basis of soft threshold function and hard threshold function. The simulation results show that the proposed algorithm is more effective than that of wavelet threshold denoising algorithm proposed by Donoho.
作者 张天瑜
出处 《长春工业大学学报》 CAS 2009年第6期683-689,共7页 Journal of Changchun University of Technology
关键词 小波分析 信号去噪 阚值 闻值函数 错误发现率 wavelet analysis signal denoising threshold threshold function False Discovery Rate(FDR).
  • 相关文献

参考文献12

  • 1Ferrando S E, Pyke R. Ideal denoising for signals in sub-Gaussian noise[J]. Applied and Computational Harmonic Analysis, 2008,24 ( 1 ) : 1-13.
  • 2Poornachandra S. Wavelet-based denoising using subband dependent threshold for ECG signals[J]. Digital Signal Processing, 2008,18 ( 1 ) : 49-55.
  • 3Johnson M T, Yuan X L, Ren Y. Speech signal enhancement through adaptive wavelet thresholding [J]. Speech Communication,2007,49(2) : 123-133.
  • 4Azzalini A, Farge M, wavelet thresholding: A Schneider K. Nonlinear recursive method to determine the optimal denoising threshold[J]. Applied and Computational Harmonic Analysis, 2005,18(2) : 177-185.
  • 5Donoho D L. De-noising by soft-thrsholding[J]. IEEE Transactions on Information Theory, 1995, 41(3) :613-627.
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81 (3) :425-455.
  • 7Abramovieh F, Benjamini Y. Thresholding of wavelet coefficients as multiple hypotheses testing procedure[C]. // Wavelets and Statistics, Lecture Notes in Statistics 103. New York: Springer- Verlag, 1995 : 5-14.
  • 8Abramovich F, Benjamini Y, Donoho D L, et al. Adapting to unknown sparsity by controlling the false discovery rate[J]. Annals of Statistics,2006, 34(2) :584-653.
  • 9GeYC, SealfonSC, TsengC H, etal. A Holmtype procedure controlling the false discovery rate [J]. Statistics & Probability Letters,2007,77(18) : 1756-1762.
  • 10Tsui K W, Tang S J. Simultaneous testing of multiple hypotheses using generalized p-values [J]. Statistics & Probability Letters, 2007, 77 ( 12 ) : 1362-1370.

二级参考文献12

  • 1Ferrando S E, Pyke R. Ideal denoising for signals in sub-Gaussian noise [J]. Applied and Computational Harmonic Analysis,2008,24(1): 1-13.
  • 2Bey N Y. Extraction of signals buried in noise. Part Ⅰ: Fundamentals [J]. Signal Processing, 2006, 86 (9) :2 464-2 478.
  • 3Bey N Y. Extraction of signals buried in noise. Part Ⅱ: Experimental results [J]. Signal Processing, 2006,86(10):2 994-3 011.
  • 4Mallat S. A wavelet tour of signal processing [M]. 2nd Edition. California: Academic Press, 1999 : 163- 175.
  • 5Xu Y S, Weaver J B, Healy D M, et al. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994,3 ( 6 ) : 747-758.
  • 6Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992,38(2) :617-643.
  • 7Gao H Y, Bruce A G. Waveshrink with firm shrinkage[J]. Statistica Sinica, 1997, 7 (4): 855- 874.
  • 8Gao H Y. Wavelet shrinkage denoising using the non-negative garrote[J]. Journal of Computational and Graphical Statistics, 1998,7(4) : 469-488.
  • 9Azzalini A, Farge M, Schneider K. Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold[J]. Applied and Computational Harmonic Analysis, 2005,18(2) : 177-185.
  • 10Berkner K, Wells Jr R O. Smoothness estimates for soft-threshold denoising via translation-invari- ant wavelet transforms[J]. Applied and Computational Harmonic Analysis, 2002,12(1) : 1-24.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部