期刊文献+

一种基于用户偏好序列的协同过滤推荐

A Collaborative Filtering Recommendation Algorithm Based on User's Preference Order
下载PDF
导出
摘要 协同过滤技术被成功地应用于个性化推荐系统中,但随着系统规模的扩大,它不能真实地反映用户的兴趣偏好.针对此缺点,提出了一种新的协同过滤推荐算法,该算法根据用户偏好序列的相似性来搜索目标用户的最近邻居和产生推荐,从而有效地解决了传统协同过滤推荐中过分依赖不能真实反映用户兴趣偏好的用户等级评价的问题,改进了传统协同过滤算法中计算邻居用户的方法.实验结果表明,该算法在个性化推荐系统应用中取得了较好的推荐效果和推荐质量. Collaborative filtering is the most successful technology for building recommendation systems.Unfortunately,this method does not reflect user′s interests with the number of users and items.So this paper describes a new algorithm for collaborative filtering;the nearest neighbors of target user can be found based on the similarity of the user′s preference order and produce recommendation.It can be used to solve the problem on severe dependence of traditional collaborative filtering on user s rank rating,which does not reflect user's interests. This algorithm may effectively improve the traditional collaborative filtering algorithms used to find the target user's neighbors. Experiment results show that the new algorithm performs well in personalized recommendation system.
出处 《泰山学院学报》 2009年第6期45-49,共5页 Journal of Taishan University
关键词 协同过滤 相似性 等级评价 偏好序列 collaborative filtering similarity rank rating preference order
  • 相关文献

参考文献3

二级参考文献30

  • 1余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践,2004,24(8):96-101. 被引量:45
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 4Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 5Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 6Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 7Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 8Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 9Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 10Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.

共引文献603

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部