摘要
G是一个Kn-e图,e∈E(Kn),设σ2(G)表示不相邻顶点度和的最小值.令|V(G)|=n=Σi=1kai,并且σ2(G)≥n+k-1.证明对于图G中任意的k个顶点v1,v2,…vk,存在点不相交的路P1,P2,…Pk,使得对于1≤i≤k,都有|V(Pi)|=ai,并且vi是Pi的一个端点.
G be a Kn-e graph, e ∈ E (Kn), let σ2 (G) denote the minimum degree sum of a pair of nonadjacent vertices, Let | V ( G ) | =n=∑^ki=1ai, and suppose that σ2( G ) ≥ n +k- 1 It is proved that for any k vertices v1, v2,… vk in G, there exist reflex disjoint paths P1 ,P2, …Pk such that |V(Pi) |=ai, and v, is a end-vertex of P, for 1 ≤i≤k .
出处
《邵阳学院学报(自然科学版)》
2009年第4期9-11,共3页
Journal of Shaoyang University:Natural Science Edition
关键词
图的划分
路因子
点不相交的路
graph partition
path-factors
vertex-disjoint paths