期刊文献+

改进的微粒群算法模拟动物的群体觅食行为

Extending the Particle Swarm Optimization to Model Animal Foraging Behaviour
下载PDF
导出
摘要 以改进的微粒群算法为工具,试图建立能更加准确反映实际动物觅食行为的模型,并对其进行仿真研究。从食物的分布、微粒对周围同伴的感知范围及微粒的综合感知能力等方面对原有的模型进行了改进。仿真结果表明改进了的模型能够更好地表现动物的群体觅食行为,并且更加真实自然地反应生态现象。 This paper proposes an extending particle swarm algorithm to model animal foraging behaviours. Improvements on the previous model is made through food distribution, scope of perception of particles to others and integrated perceptibility of particle to food. Emulational results prove'that the animal group-foraging behaviors could be carried out in a better way from those aspects, and that ecology phenomenon can be natrually reflected.
作者 孟香 曾建潮
出处 《太原科技大学学报》 2009年第6期471-475,共5页 Journal of Taiyuan University of Science and Technology
关键词 微粒群算法 群体觅食 动物感知 particle swarm optimization, group-foraging, animal perception
  • 相关文献

参考文献7

  • 1KENNEDY J, EBERHART R C. Particle Swarm Optimization [ C ]//Proc. IEEE Int. Conf. Neural Networks, USA : 1995 : 1942- 1948.
  • 2SHIY, EBERHART R C. A modified particle swarm optimizer[ C ]//Proceedings of the IEEE International Conference on Evolutionary Computation, Piscataway, NJ : IEEE Press, 1998:69-73.
  • 3XIE X, ZHANG W, YANG Z. Adaptive Particle Swarm Optimization on Individual Level[ C ]//International Conference on Signal Processing( ICSP 2002 ), Beijing ,2002 : 1215-1218.
  • 4PARSOPOULOS K E, VEAHTIS M N. Recent Approches to Global optimization Problems Through Particle Swarm Optimization [ J ]. Natural Computing,2002,1 ( 2-3 ) :235-306.
  • 5RAY T, LIEW K M. Aswarm Metaphor for Muhiovjeetive Design Optimization [ J ]. Engineering Optimization,2002,34 ( 2 ) : 141 - 153.
  • 6DI CHIO C,POLI R,DI CHIO P. Extending the Particle. Swarm Algorithm to Model Animal Foraging Behaviour[ R]. America: University of Essex ,2006.
  • 7DI CHIO C, POLl R, DI CHIO P. Modelling Group-Foraging Behaviour with Particle Swarms [ R]. Heidelberg:Springer Berlin, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部