一类二阶哈密顿系统周期解的存在性
摘要
通过应用鞍点定理,来研究一类二阶非自治共振哈密顿系统的周期解的存在性。在位势函数的二次条件下,得到了此系统周期解的存在性。
出处
《池州学院学报》
2009年第6期8-11,共4页
Journal of Chizhou University
参考文献10
-
1Kung-Ching Chang.Methods in Nonlinear Analysis[]..2005
-
2Zhao F K,Wu X.Existence and Multiplicity of Periodic Solutionfor Non-Autonomous Second-Order Systems with Line-ar Nonlinearity[].Nonlinear Analysis.2005
-
3Han Zhiqing.2π- Periodic Solutions to Ordinary Differential Systems at Resonance[].Acta Mathematica Sinica.2000
-
4TANG C,WUX.Periodic Solutions for a Class of Nonautonomous Subquadratic Second Order Hamiltonian Systems[].Journal of Mathematical Analysis and Applications.2002
-
5WUX P,,Tang C L.Periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials[].Nonlinear Analysis.2003
-
6Faraci F.Multiple periodic solutions for second order systems with changing sign potential[].Journal of Mathematical.2006
-
7Mawhin J,Willem M.Critical point theory and Hamiltonian systems[]..1989
-
8Brezis H,Nirenberg L.Remarks on finding critical points[].Communications of the ACM.1991
-
9Tang Chun Lei.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity[].Proceedings of the American Mathematical Society.1998
-
10Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations[].CBMS Regional Conf Series in Math.1986
-
1常谦顺.三维L_p和L_∞模的离散Sobolev不等式[J].计算数学,1991,13(1):6-11. 被引量:1
-
2齐予仑,胡爱莲.奇异双调和方程解的存在性[J].徐州师范大学学报(自然科学版),2011,29(3):31-34.
-
3龙瑞麟,聂伏生.加权的Sobolev不等式[J].科学通报,1991,36(11):801-803. 被引量:1
-
4胡爱莲,宋爱丽.具有临界指数及奇异性的双调和方程解的存在性[J].华中师范大学学报(自然科学版),2011,45(2):175-179.
-
5王泳.Kirchhoff系统的周期解存在性问题的探讨[J].合肥师范学院学报,2014,32(6):5-8.
-
6王泳.p-q-Laplace系统周期解的存在性[J].大学数学,2017,33(2):43-49.
-
7黄管乐.等距定理的推广[J].闽江学院学报,2004,25(5):20-22.
-
8杨杰.关于带余项Sobolev不等式的一点注记[J].重庆大学学报(自然科学版),1991,14(6):51-55.
-
9王少敏,赵富坤.非自治二阶系统周期解的存在性(英文)[J].云南师范大学学报(自然科学版),2005,25(4):3-8.
-
10张春晖.一个 Sobolev 不等式及其几何应用[J].数学学报(中文版),1992,35(1):33-38. 被引量:2