期刊文献+

直接融盐法制备锂离子电池负极材料Li_(4/3)Ti_(5/3)O_4及其电化学性能

Preparation and characterization of Li_(3/4)Ti_(3/5)O_4 for Li-ion cells by direct molten-salt method
下载PDF
导出
摘要 以CH3COOLi·2H2O和锐钛矿型TiO2为原料,通过直接融盐法合成锂离子电池负极材料Li4/3Ti5/3O4,考察合成条件对材料性能的影响,并通过X射线衍射仪(XRD)和扫描电镜(SEM)对样品进行物相和形貌分析。结果表明,先在70℃保温5h或10h,再在800℃煅烧2h可得到纯相的Li4/3Ti5/3O4粉末,平均粒径在300nm左右,且粒径分布均匀。充放电测试表明在70℃保温5h、800℃煅烧2h得到的样品具有最优异的电化学性能。以0.1C倍率充放电,其首次放电容量达到172(mA·h)/g,接近理论容量,20次循环后,容量仍保持在140(mA·h)/g。与传统的固相法相比,用直接融盐法得到的材料具有较大的锂离子扩散速率、高倍率性能和循环可逆性。 Anode material Li4/3Ti5/3O4 for lithium-ion batteries has been prepared by direct molten-salt method using CH3COOLi-2H2O and TiO2 as raw materials. The effect of synthesis condition on material properties has been studied in the present paper. CH3COOLi-2H2O is working both as solvent and reacting species. Work has been done in order to find the optimal conditions for the synthesis of Lia/3Ti5/3O4. The compounds are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It reveals that pure Li4/3Ti5/3O4 powder with average size of 300 nm is obtained by heating the mixture of CH3COOLi-2H2O and TiO2 at 70 ℃ for 5 h or 10 h, subsequently calcines the pretreated mixture at 800℃ for 2h. Galvanostatic tests show that the product heated at 70℃ for 5h and calcined at 800℃ for 2 h exhibits the best electrochemical performance. At a rate of 0.1 C, it delivers an initial capacity of 172 mAhg^-1, and a capacity of 140 mAhg^-1 at the 20th cycle. Comparing with the sample obtained by conventional solid-state route, the material obtained by molten-salt method can display larger diffusion coefficient of lithium ions, higher rate capability and excellent reversibility.
出处 《粉末冶金材料科学与工程》 EI 2009年第6期400-406,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(50772133)
关键词 锂离子电池 直接融盐法 负极材料 Li4/3Ti5/3O4 Lithium-ion battery direct molten-salt synthesis anode material Li4/3Ti5/3O4
  • 相关文献

参考文献16

  • 1OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for reehargeable lithium cells[J]. J Electrochem Soc, 1995,142(5): 1431-1435.
  • 2CHEN C H, VAUGHEY J T, JANSEN A N, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes(0<x<1 = for lithium batteries[J]. J Electroche Soc, 2001, 148, A102-A104.
  • 3VENKATESWARLU M, CHEN C H, DO J S, et al. Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy[J]. J Power Sources, 2005, 146(1/2): 204-208.
  • 4ROBERTSON A D, TUKAMOTO H, IRVINE J T S. Li1+xFe1-3xTi1+2xO4(0.0 ≤ x ≤ 0.33) based spinels: Possible negative electrode materials for future Li-ion batteries[J]. J Electrochem Soe, 1999, 146: 3958-3962.
  • 5YAO X L, XIE S, CHEN C H Q, et al. Spinel Li4Ti5O12 as a reversible anode material down to 0V[J]. Electrochim Acta, 2005, 50:4076-4081.
  • 6NI Jiang-feng, ZHOU Heng-hui, CHEN Ji-tao, et al. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles[J]. Materials Letters, 2007, 61:1260-1264.
  • 7TAN K S, REDDY M V, SUBBARAO G Vet al. High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 241-248.
  • 8BAI Ying, SHI Hong-jun, WANG Zhao-xiang, et al. Performance improvement of LiCoO2 by molten salt surface modification[J]. Journal of Power Sources, 2007, 167(2): 504-509.
  • 9TANG W P, YANG X J, LIU Z H et al. Preparation of fine single crystals of spinel-type lithium manganese oxide by LiCl flux method for rechargeable lithium batteries.Part1.LiMn2O4[J]. J Mater Chem, 2002, 12(10): 2991-2997.
  • 10CHIU C C, LI C C, DESU S B. Molten salt synthesis of a complex perovskite, Pb(Fe0.5Nb0.5)O3[J]. J Am Ceram Soc, 1991,74(1): 38-41.

二级参考文献2

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部