期刊文献+

固化过程及银粉形貌对导电胶电阻率的影响 被引量:11

Effect of curing process and morphology of silver powder on resistivity of ECA
下载PDF
导出
摘要 采用2种不同形貌的银粉、3种不同固化收缩率的导电胶基体配制6种导电胶,研究等温固化过程中导电胶基体的固化收缩率以及银粉形貌对导电胶电阻率的影响,探讨导电胶的导电机理。结果表明,银粉形貌对导电胶的电阻率影响较小;基体固化收缩率越大,使得银粉颗粒之间的接触面积增大,发生隧道效应的几率也增大,所以导电胶的电阻率越小,基体的固化收缩对导电胶导电性能的形成贡献较大,在导电胶由不导电到导电的转变过程中起着决定性的作用。导电胶未固化前是不导电的,导电性的建立发生在导电胶基体的凝胶化阶段,且在这一阶段中导电胶的电阻率随时间延长急剧下降,之后趋于稳定。 Based on two kinds of silver powder with different morphology and three matrixes with different curing shrinkage, six electrical conductive adhesives (ECA) were prepared. The effects of the curing shrinkage of matrix and the morphology of silver powder on the resistivity of the ECA were studied. The conductive mechanism of ECA has also been explored. The results show that the morphology of silver powder has less influence on the resistivity, while the curing shrinkage of the matrixes contributes more to the conductivity developments and plays a crucial role in the process of conductivity achievement. The higher shrinkage of the matrix curing, the lower the resistivity. The ECA are nearly insulated before cured. Its conductivity establishment is completed during the gelatinization stage, the conductivity dropped sharply first and then changed slightly in the process of the conductivity establishment.
作者 孙健 李芝华
出处 《粉末冶金材料科学与工程》 EI 2009年第6期427-431,共5页 Materials Science and Engineering of Powder Metallurgy
关键词 导电胶 固化收缩 导电机理 体积电阻率 electrical conductive adhesive curing shrinkage conductive mechanism volume resistivity
  • 相关文献

参考文献14

  • 1KANG S K, BUCHWALTER S L, LABIANCA N C, et al. Development of conductive adhesive materials for via fill applications[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(3): 431-435.
  • 2LU Dao-qiang, WONG C P. Development of conductive adhesives for solder replacement[J].IEEE Transactions on Components and Packaging Technologies, 2000, 23(4): 620-626.
  • 3YIM L Y, MOON M J, ZHANG K, et al. Development of novel,flexible, electrically conductive adhesives for next-generation mieroelectronies interconnect applications: 2008 Proceedings 58th Electronic Components and Technology Conference[C]. Lake Buena Vista, USA: Institute of Electrical and Electronics Engineers, 2008: 1272-1276.
  • 4JIANG Hong-jin, MOON K S , LI Y, et al. Ultra high conductivity of isotropic conductive adhesives: Electronic Components and Technology Conference, 2006. Proceedings. 56th[C]. San Diego. USA: Institute of Electrical and Electronics Engineers, 2006: 485-490.
  • 5CHENG Yang, YUEN M M F, XU Bing. Using novel materials to enhance the efficiency of conductive polymer: 2008 58th Electronic Components and Technology Conference[C]. Lake Buena Vista. USA: Institute of Electrical and Electronics Engineers, 2008: 213-218.
  • 6LU Dao-qiang, WONG C P. Overview of recent advances on isotropic conductive adhesives: 2006 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, HDP'06[D]. Shanghai. China: IEEE Computer Society Press, 2006:218-227.
  • 7S. KIRKPITRICK K. Percolation and conduction[J]. Reviews of Modern Physical, 1973, 45(4): 574-588.
  • 8SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803.
  • 9MCLACHLAN D S, BLASZKIEWICZ M, NEWNHAM R E. Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73(8): 2187-2203.
  • 10LOVINGER J. Development of electrical conduction in silver-filled epoxy adhesives[J].The Journal of Adhesion, 1979, 10(1): 1-15.

二级参考文献11

  • 1D. Klosterman, L. Li, J. E. Morris. Materials characterization, conduction development, and curing effects on reliability of isotropically conductive adhesives[J]. IEEE Trans on Component, packing and Manu. Tech. part A. ,1998, 21, 23-26.
  • 2L. Li, J. Morris. Electrical conduction models for isotropically conductive adhesives[J]. in Proc. 45th IEEE Trans on Components. Packing, and Tech. Conf. Las Vegas, NV, May, 1995, 114-120.
  • 3D. Klosterman, L. Li. Conduction and microstructure development in Ag- filled epoxies [J]. J. Electron.Manufact. ,1995, 5(4), 277-287.
  • 4Y. Fu, J. Liu, M. Willander. Conduction modelling of a conductive adhesive with bimodal distribution of conducting element[J]. International Journal of Adhesion & Adhesives, 1999(19), 281-290.
  • 5C. Week. Electron[J]. Chem. News, 1993, 8 (5), 3-8.
  • 6M. Cluskey, J. Morris, D. Finello. Models of electrical conduction nanoparticle filled polymers[J]. IEEE Trans on Components. Packing, and Manuf. Tech. - Part A.1998, 2-7.
  • 7X. Quan. Investigation of the short- range coherence length in polymer composites below the conductive percolation threshold[J]. J. Polym. Sci. ,Polymer Physics Ed. ,1987, 25, 1557-1561.
  • 8Wong C P,Lu D.Development of solder replacement isotropically adhesives [A].2000 Electronics Packaging Technology Conference [C].Sheraton Towers,Singapore,2000.214-221.
  • 9Liong S,Wong C P.An alternative to epoxy resin for application in isotropically adhesive [A].2001 International Symposium on Advanced Packaging Materials [C].Braselton GA,2001.13-18.
  • 10Rainer D.Reliability investigations on conductive adhesive joints with emphasis on the mechanics of the conduction mechanism [J].IEEE Trans-CPMT-A,2000,13(3):462-469.

共引文献22

同被引文献144

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部