摘要
由于Lubinski管柱力学理论未考虑端部边界约束对管柱螺旋弯曲的影响,试油作业中经常出现封隔器失封、测试工具损坏的现象。采用静力平衡法建立细长无重管柱弯曲微分方程;通过分析端部约束为固定端时弯曲微分方程的解,得到细长无重管柱弯曲构型与载荷之间的关系。并将结果与Lubinski管柱力学理论对比,通过实例,提出了合理组合管柱的建议。
The influence of end boundary constraint on helical buckling of string is not considered in Lubinski Is string mechanical theory. It causes problems in oil testing operations, such as packer unsealing and testing instrument damage. Bending differential equation of slender string with zero gravity is established by using static equilibrium method. The relationship between buckling structure and load of slender string with zero gravity is obtained by analyzing the solution of bending differential equation while end boundary constraint is fixed. Comparing the results with Lubinskig string mechanical theory, some suggestions for appropriate combining the string are presented by the cases.
出处
《吐哈油气》
2009年第4期371-374,382,共5页
Tuha Oil & Gas
关键词
管柱
螺旋弯曲
力学分析
封隔器
边界条件
string
helical buckling
mechanical analysis
packer
boundary condition