期刊文献+

基于智能优化算法的多时段可中断负荷调度 被引量:5

Multi-period dispatch of interruptible loads by intelligent optimization algorithms
下载PDF
导出
摘要 探讨智能优化算法在多时段可中断负荷调度问题中的应用,建立了的优化模型,可考虑中断补偿费用最小化和中断频率最小化等多个优化目标,并可计入不同可中断用户的不同中断特性.并给出了的算例分析,着重比较了基于离散二元粒子群优化算法和遗传算法的结果,表明离散粒子群算法在收敛性和精度上均优于遗传算法,具有较好的应用价值. Application of intelligent optimization algorithms to the multi-period interruptible load dispatch problem is discussed in this paper. Multi objectives, such as minimizing the interruption payments and interruption frequency, can be included in the proposed interruptible load dispatch model. The characteristics of different interruptible loads are also considered. Numerical simulations using discrete binary particle swarm optimization(BPSO) and the genetic algorithm(GA) show that the BPSO has a performance on convergence and precision than that of the GA. Thus the BPSO presents better potentials in solving the interruptible load dispatch problem.
出处 《电力科学与技术学报》 CAS 2009年第4期34-38,共5页 Journal of Electric Power Science And Technology
基金 国家自然科学基金(70871074)
关键词 电力市场 多时段可中断负荷调度 离散二元粒子群优化 遗传算法 power market multi-period dispatch of interruptible load binary particle swarm optimization genetic algorithm
  • 相关文献

参考文献10

  • 1Tuan L A, Bhattacharya K. Competitive framework for procurement of interruptible load services [ J ]. IEEE Transactions Power Systems, 2003, 18(2) :889-897.
  • 2高有灯.可中断负荷管理及其在广东电网的应用[J].电力科学与技术学报,2007,22(3):85-89. 被引量:9
  • 3Huang K Y. Demand subscription services-An iterative dynamic programming for the substation suffering from capacity shortage[ J ]. IEEE Transactions Power Systems, 2003, 18 (2) : 947-953.
  • 4Huang K Y, Chin H C, Huang Y C. A model reference adaptive control strategy for interruptible load management[ J]. IEEE Transactions Power Systems, 2004, 19( 1 ) : 683-689.
  • 5王建学,王锡凡,王秀丽.电力市场可中断负荷合同模型研究[J].中国电机工程学报,2005,25(9):11-16. 被引量:115
  • 6Kennedy J, Eberhart R. A discrete binary version of the particle swarm optimization[ C]. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Orlando,USA,1997.
  • 7GALING Zwe-lee. Discrete particle swarm optimization algorithm for unit commitment [ C ]. In Proceedings of IEEE Power Engineering Society General Meeting, Toronto,Canada,2003.
  • 8刘涌,侯志俭,蒋传文.求解机组组合问题的改进离散粒子群算法[J].电力系统自动化,2006,30(4):35-39. 被引量:28
  • 9Kazarlis S A, Bakitrtzis A G, Petridis V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Transactions Power Systems, 1996, 11(1): 83-92.
  • 10Coello C A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art[ J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1 245-1 287.

二级参考文献34

共引文献145

同被引文献104

引证文献5

二级引证文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部