期刊文献+

Van der Waals型流体相变问题的渐近稳定性 被引量:1

Asymptotic stability of the solution of a model system for van der Waals fluids
下载PDF
导出
摘要 研究了van der Waals流体动力学方程组,通过引入人工黏性和周期边界条件,给出了此类流体方程组解的渐近稳定性。计算了带人工黏性的定常解问题,通过局部解的存在唯一性分析和先验估计,证明了定常解在全局范围内的渐近稳定性。 A model system of van der Waals fluids has been investigated, and the asymptotic stability of the solution has been established for a periodic boundary value problem with artificial viscosity. A solution of steady-state periodic boundary value problem has also been derived. By means of the existence and uniqueness of the local solution and the priori estimates, the steady-state solution is shown to have asymptotic stability.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期140-143,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 Vail der Waals流体 定常问题 渐近稳定性 能量方法 van der Waals fluids steady-state problem asymptotic stability energy method
  • 相关文献

参考文献5

  • 1Mei M, Wong Y S, Liu L P. Phase transitions in a couped viscoelastic system with periodic initial-boundary condition( Ⅰ )[ J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 7 : 825 - 837.
  • 2Mei M, Wong Y S, Liu L P. Phase transitions in a couped viscoelastic system with periodic initial-boundary condition( Ⅱ)[J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 7:839 - 857.
  • 3杨翠,施小丁.Vander Waals流体的大时间行为[J].北京化工大学学报(自然科学版),2004,31(3):87-89. 被引量:2
  • 4Chen X, Wang X P. Phase transition near a liquid-gas coexistence equilibrium [ J]. Arch Rational Mech Anal, 1984,86:317 -351.
  • 5陈亚洲,周培培,施小丁.一维黏性可压缩流体冲击波解的渐近稳定性[J].北京化工大学学报(自然科学版),2007,34(5):557-560. 被引量:4

二级参考文献18

  • 1Hattori H. The Riemann problem and the existence of weak solutions to a system of mixed-type in dynamic phase transition[J]. J Diff Equs, 1998, 146: 287- 319
  • 2Huang F, Matsumura A, Shi X. A gas-solid free boundary promblem for a compressible viscous gas[J]. SIAM J Math Anal, 2003, 34 (6): 1330-1354
  • 3Huang F, Matsumura A, Shi X. Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas [J ]. Commun Math Phys, 2003,239: 261 - 285
  • 4Kawashima S, Nishida T. Global solution to the initial problem for the equations of one-dimensional motion of viscous polytropic gases[J]. J Math Kyoto Univ, 1981,21: 825 - 827
  • 5Matsumura A, Nishihara K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas[J]. Japan J Appl Math, 1985,2:17-25
  • 6Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas [ J ]. Japan J Appl Math, 1986,3:1-13
  • 7Fan T. A vanishing viscosity approach on the dynamics of phase transitions in Van der Waals fluids[J ]. J Diff Equs, 1993, 103:179-204
  • 8Hsiao L. Uniqueness of admissible solutions of Riemann problem of systems of conservation laws of mixed type [J]. J Diff Equas, 1990, 86:197-233
  • 9Zumbrun K. Dynamical stability of phase transitions in the p-system with viscosity-capillari-ty [J ]. SIAM J Math, 2000, 60: 1913-1924
  • 10Chen C, Wang X. Phase transition near a liquid-gas coexistence equilibrium[J]. SIAM J Appl Math, 2000, 61(2): 454 - 471

共引文献3

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部