摘要
利用锥理论和Banach压缩映象原理在更一般的条件下建立了序Banach空间中一类非混合单调二元算子不动点的存在唯一性定理,并应用到Banach空间中二阶非线性Volterra型微分-积分方程初值问题,改进并推广了已有的一些结果.
By using the cone theory and the Banach contraction mapping principle, the existence and uniqueness theorem of fixed points for mixed non-monotone binary operators in ordered Banach spaces are investigated under more general condition. As an application, an existence and uniqueness theorem of solutions for initial value problems of second order nonlinear integro-differential equations of Volterra type in Banach spaces is given. The results presented here improve and generalize some known results.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第1期55-60,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10771117)
高等学校博士点科研基金(20060446001)
山东省自然科学基金(Y2007A23)
曲阜师范大学博士科研启动经费(Bsqd2007040)
关键词
锥理论
非混合单调二元算子
算子不动点
cone theory
mixed non-monotone binary operators
fixed points of operator