期刊文献+

(ω)性质及Weyl型定理 被引量:1

Property (ω) and Weyl Type Theorem
原文传递
导出
摘要 (ω)性质是Rakocevic给出的Weyl定理的一种变化.本文通过定义新的谱集,给出了有界线性算子同时满足(ω)性质和a-Weyl定理的充要条件.同时,利用所得的主要结论,研究了H(p)算子的(ω)性质. Abstract In this note we study the property (ω), a variant of Weyl's theorem introduced by Rakocevic, by means the new spectrum. We establish for a bounded linear operator defined on a Banach space a sufficient and necessary condition for which both property (ω) and a-Weyl's theorem hold. As a consequence of the main result, we study the property (ω) and a-Weyl's theorem for H(p) operators.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第1期75-82,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10726043) 教育部新世纪优秀人才支持计划资助项目
关键词 (ω)性质 α-Weyl定理 property (ω) a-Weyl's theorem spectrum
  • 相关文献

参考文献16

  • 1Weyl H., Uber beschrankte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo, 1909, 27: 373-392.
  • 2Harte R., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349: 2115-2124.
  • 3Rakocevic V., Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 1989, 34: 915-919.
  • 4Rakocevic V., On a class of operators, Mat. Vesnik, 1985, 37: 423-426.
  • 5Berkani M., Koliha J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szegead), 2003, 69: 379-391.
  • 6Aiena P., Pena P., Variation on Weyl's theorem, J. Math. Anal. Appl., 2006, 324: 566-579.
  • 7Aiena P., Biondi M. T., Property (ω) and perturbations, in press.
  • 8Schmoeger C., Ein Spektralabbildungssatz, Arch Math., 1990, 55: 484-489.
  • 9Harte R. E., On Kato non-singularity, Studia Math., 1996, 117: 107-114.
  • 10Oberai K. K., On the Weyl spectrum, II, IllinoisJ. Math., 1997, 21: 84-90.

同被引文献8

  • 1Rakocevic V.On a class of operators[J].Mat Vesnik,1985,37:423-426.
  • 2Aiena P, Pefia P. Variations on Weyl's theorem[J]. J Math Anal Appl,2006,324:566-579.
  • 3Grabiner S.Uniform ascent and descent of bounded operaters[J].J Math Soc Japan,1982,34:317-337.
  • 4Taylor A E.Theorems on ascent,descent,nullity and defect of linear operator[J].Math Ann,1966,163:18-49.
  • 5Finch J K.The single valued extension property on a Banach space[J].J Math,1975,58:61-69.
  • 6Xiaohong C.Topological uniform descent and Weyl type theorem[J].Linear Algebra Appl,2007,420:175-182.
  • 7Lauren K B,Neumann M M.An introduction to local spectral theory[M].London:Clarendon Press,2000.
  • 8张鹤佳,曹小红.(ω_1)性质与(ω)性质的判定及其等价性[J].浙江大学学报(理学版),2011,38(3):262-265. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部