摘要
(ω)性质是Rakocevic给出的Weyl定理的一种变化.本文通过定义新的谱集,给出了有界线性算子同时满足(ω)性质和a-Weyl定理的充要条件.同时,利用所得的主要结论,研究了H(p)算子的(ω)性质.
Abstract In this note we study the property (ω), a variant of Weyl's theorem introduced by Rakocevic, by means the new spectrum. We establish for a bounded linear operator defined on a Banach space a sufficient and necessary condition for which both property (ω) and a-Weyl's theorem hold. As a consequence of the main result, we study the property (ω) and a-Weyl's theorem for H(p) operators.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第1期75-82,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10726043)
教育部新世纪优秀人才支持计划资助项目