期刊文献+

多重胞元和规则多重分形

Multiple Cell Elements and Regular Multifractals
下载PDF
导出
摘要 以超级分形纤维和双重分形纤维的研究结果为基础,达成了如下目标:首先,归纳、抽象出了多重胞元概念;其次,基于多重胞元概念,证实:具有严格自相似性的规则多重分形,不仅是可构造的,而且其构造模式具有普遍性;再者,通过分析构造模式,发现:任何规则多重分形,都可以在多重胞元意义下,被精确地等价成具有多重精细结构的广义单重分形.而基于这种等价性,单重分形维数公式就能够推广至规则多重分形维数公式,单重分形几何就能够推广至规则多重分形几何;最后,借助规则多重分形,构造了几种黄金分形. Based on fractal super fibers and binary fractal fibers, the following objectives were approached: Firstly, the concept of multiple cell elements was induced and abstracted. Secondly, through multiple cell elements, regular multifractals with strict serf-similarities were confirmed not only constructible, but also being of universal construction mode. Thirdly, through the construction mode, a regular multifractat was found to be equivalent to a generalized regular single fractal with multiple fine structures under the meaning of multiple cell ele- ments. On the basis of this equivalence, the dimension of single fractals was extended to that of regular multifractals, and the geometry of single fractals was extended to that of regular multifractals. Fourthly, through regular multifractals a few golden fractals were constructed.
出处 《应用数学和力学》 CSCD 北大核心 2010年第1期51-60,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10872114) 江苏省自然科学基金资助项目(BK2008370)
关键词 双重分形纤维 双重胞元 规则双重分形 多重胞元 规则多重分形 binary fractal fibers binary cell elements regular binary fractals multiple cell elements multifractals
  • 相关文献

参考文献19

  • 1YIN Ya-jun, ZHANG Tong, YANG Fan, et al. Geometric conditions for fractal super carbon nanotubes with strict self-similarities [ J ]. Chaos, Solitons and Fractals, 2008, 37 (5) : 1257- 1266.
  • 2YIN Ya-jun, YANG Fan, ZHANG Tong, et al. Growth condition and growth limit for fractal super fibers and fractal super tubes [ J ]. International Journal of Nonlinear Sciences and Numerical Simulations, 2008, 9( 1 ) : 96-102.
  • 3YIN Ya-jun, YANG Fan, FAN Qin-shan, et al. Cell elements, growth modes and topology evolutions of fractal supper fibers [ J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10( 1 ) : 1-12.
  • 4YIN Ya-jun, YANG Fan, FAN Qin-shan. Isologous fractal super fibers or fractal super lattices [ J ]. International Journal of Electrospun Nanofibers and Applications, 2008, 2 ( 3 ) : 193- 201.
  • 5FAN Jie, LIU Jun-fang, HE Ji-huan. Hierarchy of wool fibers and fractal dimensions [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2008, 9 ( 3 ) : 293-295.
  • 6HE Ji-huan, REN Zhong-fu, FAN Jie, et al. Hierarchy of wool fibers and its interpretation using E-infinity theory [J]. Chaos, Solitons and Fractals, 2009, 41(4) :1839-1841.
  • 7殷雅俊,杨帆,李颖,范钦珊.从毛发纤维中抽象出的分形几何与拓扑[J].应用数学和力学,2009,30(8):919-926. 被引量:7
  • 8黄立基,丁菊仁.多标度分形理论及进展[J].物理学进展,1991,11(3):269-330. 被引量:33
  • 9Mandelbrot B B. On the intermittent free turbulence [ C ]//Weber E. Proc Symp Turbulence of Fluid and Plasma. New York: Interscience, 1969:483-492.
  • 10Grassberger P. Generalized dimensions of strange attractors [ J]. Physics Letters A, 1983, 97 (6) : 227-230.

二级参考文献17

  • 1谢和平,孙洪泉.分形数学基础与分形在岩石力学中的应用[J].矿业世界,1996(4):1-6. 被引量:12
  • 2郝柏林.分岔、混沌、奇怪吸引子、湍流及其它——关于确定论系统中的内在随机性[J]物理学进展,1983(03).
  • 3《物理学进展》编辑方针[J]物理学进展,1982(02).
  • 4P. Grassberger,R. Badii,A. Politi. Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors[J] 1988,Journal of Statistical Physics(1-2):135~178
  • 5Mitchell J. Feigenbaum. Scaling spectra and return times of dynamical systems[J] 1987,Journal of Statistical Physics(5-6):925~932
  • 6David Ruelle. Large volume limit of the distribution of characteristic exponents in turbulence[J] 1982,Communications in Mathematical Physics(2):287~302
  • 7Yin, Yajun,Zhang, Tong,Yang, Fan,Qiu, Xinming.Geometric conditions for fractal super carbon nanotubes with strict self-similarities[].Chaos Solitons Fractals.2008
  • 8Yin, Yajun,Yang, Fan,Zhang, Tong,Fan, Qinshan.Growth condition and growth limit for fractal super fibers and fractal super tubes[].International Journal of Nonlinear Sciences and Numerical Simulation.2008
  • 9Yin, Yajun,Yang, Fan,Fan, Qinshan,Zhang, Tong.Cell elements, growth modes and topology evolutions of fractal supper fibers[].International Journal of Nonlinear Sciences and Numerical Simulation.2009
  • 10Yin, Yajun,Yang, Fan,Fan, Qinshan.Isologous fractal super fibers or fractal super lattices[].International Journal of Electrospun Nanofibers and Applications.2008

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部