期刊文献+

具有非单调摩擦热弹性接触问题的有限元法

Approximation of Thermoelasticity Contact Problem With Nonmonotone Friction
下载PDF
导出
摘要 给出了一个变形体和刚性基础之间用双边摩擦表达其接触性质的、静态热弹性问题的方程式及其近似解法.以非单调、多值性表示该摩擦定律.忽略了问题的耦合效应,则问题的传热部分与弹性部分各自独立处理.位移矢量公式化为非凸的次静态问题,用局部Lipschitz连续函数来表示变形体的总势能.用有限单元法近似求解全部问题. The formulation and approximation of a static thermoelasticity problem that described bilateral frictional contact between a deformable body and a rigid foundation was presented. The friction was in the form of nonmonotone and multivalued law. The coupling effect of the problem was neglected, therefore the thermic part of the problem was considered independently of the elasticity problem. For the displacement vector, a substationary problem for non-convex, locally Lipschitz continuous functional representing the total potential energy of the body was formulated. All problems formulated were approximated by the finite element method.
出处 《应用数学和力学》 EI CSCD 北大核心 2010年第1期71-80,共10页 Applied Mathematics and Mechanics
基金 塞尔维亚共和国科学部资助项目(144005)
关键词 静态热弹性接触 非单调多值摩擦 半变分不等式 次静态问题 有限单元近似法 static thermoelastic contact nonmonotone multivalued friction hemivariational inequality substationary problem finite element approximation
  • 相关文献

参考文献19

  • 1Panagiotopoulos P D. Inequality Problems in Mechanics and Applications : Convex and Nonconvex Energy Functions[M]. Boston, Basel, Stuttgart: Birkhauser, 1985.
  • 2Panagiotopoulos P D. Hemivariational Inequalities: Applications in Mechanics and Engineering[M]. Berlin, Heidelberg, New York: Springer, 1993.
  • 3Denkowsld Z, Migorsld S. A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact [ J ]. Nonlinear Analysis, 2005, 60 ( 8 ) : 1415 - 1441,.
  • 4Goeleven D, Motreanu D, Dumont Y, et al. Variational and Hemivariational Inequalities. Theory, Methods and Applications, Volume Ⅰ : Unilateral Analysis and Unilateral Mechanics[ M]. Boston, Dordrecht, London: Kluwer, 2003.
  • 5Goeleven D, Motreanu D. Variational and Hemivariational Inequalities. Theory, Methods and Applications, Volume Ⅱ : Unilateral Problems[ M]. Dordrecht, London: Kluwer, 2003.
  • 6Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications[M]. New York, Basel, Hong Kong: Marcel Dekker, 1995.
  • 7Haslinger J, Miettinen M, Panagiotopoulos P D. Finite Element Method for Hemivariational Inequalities. Nonconvex Optimization and Its Applications[ M]. Vol 35, Dordrecht: Kluwer, 1999.
  • 8Baniotopoulos C C, Haslinger J, Moravkova Z. Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities [ J ]. Appl Math, 2005, 50 ( 1 ) : 1-25.
  • 9Miettinen M, Haslinger J. Approximation of nonmonotone multivalued differential inclusions [J]. IMA J Numer Anal, 1995, 15(4) : 475-503.
  • 10Miettinen M, Mkel M M, Haslinger d. On numerical solution of hemivariational inequalities by nonsmooth optimization methods[ J ]. J Global Optimization, 1995, 6 (4) : 401-425.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部