期刊文献+

The Chen-Ruan Cohomology of Almost Contact Orbifolds 被引量:1

The Chen-Ruan Cohomology of Almost Contact Orbifolds
原文传递
导出
摘要 Comparing to the Ch-~Ruan cohomology theory for the almost complex orbifolds, we study the orbifold cohomology theory for almost contact orbifolds. We define the Chen-Ruan cohomology group of any almost contact orbifold. Using the methods for almost complex orbifolds, we define the obstruction bundle for any 3-multisector of the almost contact orbifolds and the Chen^Ruan cup product for the Che-Ruan cohomology. We also prove that under this cup product the direct sum of all dimensional orbifold cohomology groups constitutes a cohomological ring. Finally we calculate two examples. Comparing to the Ch-~Ruan cohomology theory for the almost complex orbifolds, we study the orbifold cohomology theory for almost contact orbifolds. We define the Chen-Ruan cohomology group of any almost contact orbifold. Using the methods for almost complex orbifolds, we define the obstruction bundle for any 3-multisector of the almost contact orbifolds and the Chen^Ruan cup product for the Che-Ruan cohomology. We also prove that under this cup product the direct sum of all dimensional orbifold cohomology groups constitutes a cohomological ring. Finally we calculate two examples.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第1期77-88,共12页 数学学报(英文版)
基金 supported in part by NSFC Project 60603004, 10631060
关键词 almost contact orbifolds Chen Ruan cohomology twisted sectors almost complex orbifold almost contact orbifolds, Chen Ruan cohomology, twisted sectors, almost complex orbifold
  • 相关文献

参考文献14

  • 1Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds I. Nucl. phys. B, 261, 678-686 (1985).
  • 2Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds II. Nucl. phys. B, 274, 285-314 (1986).
  • 3Zaslow, E.: Topological orbifold models and quantum cohomology rings. Comm. Math. Phys., 156(2), 301-331 (1993).
  • 4Chen, W., Ruan, Y.: A new cohomology theory for orbifolds. Comm. Math. Phys., 248(1), 1-31 (2004).
  • 5Chen, W., Ruan, Y.: Orbifold Gromov-Witten Theory. Orbifolds in Mathematics and Physics (Madison, WI, 2001), 25-85, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002.
  • 6Fantechi, B., Gottsche, L.: Orbifold cohomology for global quotients. Duke Math. J., 117(2), 197-227 (2003).
  • 7Uribe, B.: Orbifold cohomology of the symmetric product. Comm. Anal. Geom., 13(1), 113-128 (2005).
  • 8Park, B. D., Poddar, M.: The Chen-Ruan Cohomology ring of Mirror Quintic. J. Reine Angew Math., 578, 49-77 (2005).
  • 9Poddar, M.: Orbifold Hodge numbers of Calabi-Yau hypersurfaces. Pacific J. Math., 208(1), 151-167 (2003).
  • 10Jiang, Y.: The Chen Ruan cohomology of weighted projective spaces. Canad. J. Math., 59(5), 981-1007 (2007).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部