期刊文献+

Pseudo-Differential Operators on Sobolev and Lipschitz Spaces 被引量:2

Pseudo-Differential Operators on Sobolev and Lipschitz Spaces
原文传递
导出
摘要 In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in Sρ,δ^m on Sobolev spaces, where ∈ R, ρ≤ 1 and δ≤ 1. As its applications, the boundedness of commutators generated by pseudo-differential operators on Sobolev and Bessel potential spaces is deduced. Moreover, the boundedness of pseudo-differential operators on Lipschitz spaces is also obtained. In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in Sρ,δ^m on Sobolev spaces, where ∈ R, ρ≤ 1 and δ≤ 1. As its applications, the boundedness of commutators generated by pseudo-differential operators on Sobolev and Bessel potential spaces is deduced. Moreover, the boundedness of pseudo-differential operators on Lipschitz spaces is also obtained.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第1期131-142,共12页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No. 10871024)
关键词 pseudo-differential operator Sobolev space Bessel potential space Lipschitz space pseudo-differential operator, Sobolev space, Bessel potential space, Lipschitz space
  • 相关文献

参考文献7

  • 1Hormander, L.: Pseudo-differential operators and hypoelliptic equations. Proc. Sympos. Pure Math., 10, 138-183 (1967).
  • 2Auscher, P., Taylor, M.: Paradifferential operators and commutator estimates. Comm. P. D. E., 20, 1743- 1775 (1995).
  • 3Stein, E. M:: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
  • 4Taylor, M.: Commutator estimates. Proc. Amer. Math. Soc., 131, 1501-1507 (2003).
  • 5Taylor, M.: Pseudo-Differential Operators and Nonlinear PDE, Birkhguser, Boston, 1991.
  • 6Alvarez, J., Hounie, J.: Estimates for the kernel and continuity properties of pseudo-differential operators. Ark. Mat., 28, 1-22 (1990).
  • 7Bony, J.: Calcul symbolique et propagation des singularities pour les equations aux derivees partielles nonlineaires. Ann. Sci. Ecole Norm. Sup., 14, 209-246 (1981).

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部