期刊文献+

Some ω-unique and ω-ΡProperties for Linear Transformations on Hilbert Spaces 被引量:2

Some ω-unique and ω-ΡProperties for Linear Transformations on Hilbert Spaces
原文传递
导出
摘要 Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis. Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第1期23-32,共10页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10871144) the Natural Science Foundation of Tianjin(No.07JCYBJC05200)
关键词 Linear complementarity problem Jordan product Lorentz cone ω-P property column sufficient property ω-uniqueness property Linear complementarity problem, Jordan product, Lorentz cone, ω-P property, column sufficient property, ω-uniqueness property
  • 相关文献

参考文献15

  • 1Chiang, Y.Y. Merit functions on Hilbert spaces. Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, 2007 (Preprint).
  • 2Cottle, R.W., Pang, J.S., Stone, R.E. The linear complementarity problem, Academic, Boston, MA. 1992.
  • 3Dash, A.T., Nandal S. A complementarity problem in mathematical programming in Banach space. J. Math. Anal Appl., 98:318-331 (1984).
  • 4Facchinei, F., Pang, J.S. Finite-dimensional variational inequalities and complementarity problems, Vol I. Springer-Verlag, New York, 2003.
  • 5Faraut, J., Koranyi, A. Analysis on symmctric cones. Oxford Mathematical Monographs Oxford University Press, New York, 1994.
  • 6Kreyszig, E. Introductory functional anaysis with applications. Krieger Pub. Co., 1978.
  • 7Gowda,-M.S., Sznajder,-R. Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim., 18: (2007)461-481.
  • 8Gowda, M.S., Sznajder, R., Tao, J. Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl., 393:203-232 (2004).
  • 9Han, J., Xiu, N.H., Qi, H.D. Theory and algorithms of nonlinear complementarity problems. Shanghai, Shanghai Scientific - Technical Publishers, 2006.
  • 10Huang, Z.H. Sufficient conditions on nonemptiness and boundedness of the solution set of the P0 function nonlinear complementarity problem. Oper. Res. Letters, 30:202-210 (2002).

同被引文献32

  • 1黄正海,韩继业,徐大川,张立平.The non-interior continuation methods for solving the function nonlinear complementarity problem[J].Science China Mathematics,2001,44(9):1107-1114. 被引量:17
  • 2Zhenghai Huang,Jiye Han,Dachuan Xu,Liping Zhang.The non-interior continuation methods for solving theP 0 function nonlinear complementarity problem[J]. Science in China Series A: Mathematics . 2001 (9)
  • 3M. Seetharama Gowda,Thomas I. Seidman.Generalized linear complementarity problems[J]. Mathematical Programming . 1990 (1-3)
  • 4J. M. Borwein.Generalized linear complementarity problems treated without fixed-point theory[J]. Journal of Optimization Theory and Applications . 1984 (3)
  • 5Robert D. Doverspike.Some perturbation results for the Linear Complementarity Problem[J]. Mathematical Programming . 1982 (1)
  • 6S. Karamardian.The complementarity problem[J]. Mathematical Programming . 1972 (1)
  • 7S. Karamardian.Generalized complementarity problem[J]. Journal of Optimization Theory and Applications . 1971 (3)
  • 8G. J. Habetler,A. L. Price.Existence theory for generalized nonlinear complementarity problems[J]. Journal of Optimization Theory and Applications . 1971 (4)
  • 9Borwein J M,Dempster M A H.The linear order complementarity problem. Mathematics of Operations Research . 1989
  • 10Chiang Y Y,Pan S H,Chen J S.A merit function method for innite-dimensional SOCCPs. . 2010

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部