摘要
Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.
Given a real (finite-dimensional or infinite-dimensional) Hilbert space H with a Jordan product, we introduce the concepts of ω-unique and ω-P properties for linear transformations on H, and investigate some interconnections among these concepts. In particular, we discuss the ω-unique and ω-P properties for Lyapunov-like transformations on H. The properties of the Jordan product and the Lorentz cone in the Hilbert space play important roles in our analysis.
基金
Supported by the National Natural Science Foundation of China(No.10871144)
the Natural Science Foundation of Tianjin(No.07JCYBJC05200)