期刊文献+

协同推荐系统检测模型的一种优化方法 被引量:1

An Optimal Method for Detection Model in Collaborative Recommender Systems
下载PDF
导出
摘要 研究表明协同推荐技术容易受到攻击。由于现有的检测模型对低填充规模攻击的检测效果不理想,本文结合检测模型特点,改进Pearson相似度计算方法。其思想是,降低共同评分项目对用户相似度程度的影响,从而降低填充规模较小的攻击数据与真实用户之间的相似度。实验结果表明该方法对低填充规模攻击有较好的抗攻击性。 Research has shown that collaborative technologies recommended vulnerable to attack. While some attack profiles may go undetected at low filler sizes by existence detecting models. In this paper,considered of detection models,we improve the method of Pearson similarity computation method. This method is able to reducing the common evaluation item's impact to compute the user's similarity,and as a result,it will decrease the similarity between the attack users and the real users. The experimental results show that it is effective to raise the systems robust against attack with low filler sizes.
出处 《微计算机信息》 2010年第3期207-208,231,共3页 Control & Automation
关键词 推荐系统 检测模型 相似度 优化方法 Recommender Systems Detection Model Similarity Optimal Method
  • 相关文献

参考文献8

  • 1P. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling attacks in online recommender systems. In WIDM '05: Proc'. Of the 7th annual ACM Int'l workshop on Web information and data management, pages 67 - 74, New York, NY, 2005. ACM Press.
  • 2LAM S K,RIEDL J.Shilling recommender systems for fun and profit. [C]//Proc of the 13th International Conference on World Wide Web.New York:ACM Press.2004:393-402.
  • 3Mobasher B,Burke R,Bhaumi k R,et al.Effective attack models for shilling item-based collaborative filtering systems In:Proceedings of the 2005 WebKDD,workshop,held in conjunction with ACM SIGKDD 2005,Chicago,Illinois,2005.
  • 4Burke R,Mobasher B,Bhaumik R.Limited knowledge shilling attacks in collaborative filtering systems. In:Proceeding s of the 3rd UCAI Workshop in Intelligent Techniques for Personalization,Edinburgh, Scotland,2005.
  • 50' Mahony M ,Hurley N,Kushrnerick N,et al.Collaborative recommendation:A robustness analysis.ACM Transactions on Intemet Technology,2004,4(4):344- 377.
  • 6R. Burke, B. Mobasher, C. Williams, and R. Bhaumik. Classification features for attack detection in collaborative recommender systems. In To appear in Proceedings of The Twelfth ACM SIGKDD International Conference on Knowledge Discovery and- Data Mining (KDD 2006), Philadelphia, PA, August 2006.
  • 7Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Towards trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology 7(4) (2007).
  • 8欧立奇,陈莉,马煜.协同过滤算法中新项目推荐方法的研究[J].微计算机信息,2005,21(11X):186-187. 被引量:10

二级参考文献3

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2GordonS.Linoff Michael J.A Berry.Web数据挖掘:将客户数据转化为客户价值[M].北京电子工业出版社,2002.136-140.
  • 3罗建铭.[D].台北科技大学商业自动化与管理研究所,1998.

共引文献9

同被引文献8

  • 1A. M. Rashid. Mining Influence in Recommender Systems. [Ph. D. Thesis], Minneapolis, Minnesota: University of Minnesota,2007.
  • 2E. Rich. User Modeling via Stereotypes. Cognitive Science, 1979, 3(4):329-354.
  • 3D. Goldberg, D. Nichols, B. M. Oki et al. Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM, I992, 35(12):61-70.
  • 4W. Hill, L. Stead, M. Rosenstein, et al. Recommending and E- valuating Choices in a Virtual Community of Use. In: proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI95), Denver, Colorado, USA, ACM Press, 1995, 175- 186.
  • 5U. Shardanand, P. Maes. Social Information Filtering: Algorithms for Automating 'wOrd of Mouth'. In: Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, Denver, USA, ACM Press, 1995, 210-217.
  • 6N. Belkin, B. W. Croft. Information Filtering and Information Retrieval: Two Sides of the Same Coin Communication of the ACM, 1992, 35(12): 29-38.
  • 7J. B. Schafer, J. A. Konstan, J. Riedl. E-Commerce Recommen- dation applications. Data Mining and Knowledge Discovery, 2001,5 (1):115-153.
  • 8B. P. S. Murthi, Sumit Sarkar. The Role of the Management Sci- ences in Research on Personalization. MANAGEMENT SCIENCE, Vol. 49, No. 10, October 2003, pp. 1344-1362.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部