期刊文献+

一类四阶有理差分方程的振动规律和全局稳定性

Rules of Oscillation and Global Asymptotic Stability for a Fourth-Order Rational Difference Equation
下载PDF
导出
摘要 主要讨论了一类四阶有理差分方程xn+1=(xn-2+xn-3)/(xn-2xn-3+1),n=0,1,2,…,初始值x-3,x-2,x-1,x0∈(0,∞)的振动规律和全局稳定性,即描述了其解的振动周期为15,且正、负半环长的规律为:4+,3-,1+,2-,2+,1-,1+,1-;又指出了解之间存在xn+kΔ(C(xn+k))x(nC(xn+k)C(xn))(n≥-3)的大小关系;并得到了方程的平衡点是全局渐近稳定的. A fourth-order rational difference equation is considered. The rules of oscillation and global asymptotic stability is described clearly. Mainly, the lengths of positive and negative semi-cycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is 4^+ ,3^- ,1^+ ,2^- ,2^+ ,1^- ,1^+ ,1^- in a period. The relation between solution and solution is xn+kΔ (C (xn+k ) )xn^(C(xn+k)C(xn)) (n ≥ -3 ). By utilizing this rule and relation, its negative equilibrium point is verified to be globally asymptotically stable.
作者 陈云新
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2009年第4期14-17,共4页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10771094) 湖南省教育厅科研重点资助项目(09A080)
关键词 有理差分方程 振动规律 全局渐近稳定 rational difference equation oscillatory rule global asymptotic stability
  • 相关文献

参考文献10

  • 1LI X. Two rational recursive sequence [ J]. Computers and Mathematics with Applications ,2004,47( 1 ) : 487-494.
  • 2霍海峰,苗黎明,张良.一类高阶有理差分方程的全局渐近稳定性[J].兰州理工大学学报,2008,34(1):125-127. 被引量:4
  • 3LI Z, ZHU D M. Global asymptotic stability of a higher order nonlinear difference equation [J]. Appl Math Lett ,2006 ,19 :926-930.
  • 4AGARWAL R P. Difference Equations and Inequalities[ M]. 2nd ed. New York: Marcel I)ekker,2000.
  • 5KOCIC V L, LADAS G. Global behavior of nonlinear difference equations of higher order with applications [ M]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 6霍海峰,刘纯英,马战平,向红.一类有理差分方程的全局渐近稳定性[J].兰州理工大学学报,2009,35(1):136-138. 被引量:3
  • 7NESEMANN T. Positive nonlinear difference equations : some results and applications [ J ]. Nonlinear Analysis, 2001,47 ( 7 ) : 4 707-4 717.
  • 8SUN T X, XI H J. Global asymptotic stability of a higher order rational difference equation[ J ]. J Math Anal Appl, 2007,330 ( 3 ) :462-466.
  • 9LI X. Global behavior for fourth-order rational difference equation [ J ]. J Math Anal Appl,2005,312 (3) :555-563.
  • 10BERENHAUT K S, STEVIC S. The global attractivity of a higher order rational difference equation [ J ]. J Math Anal Appl, 2007,326(2) :940-944.

二级参考文献12

  • 1李万同,张艳红,苏有慧.GLOBAL ATTRACTIVITY IN A CLASS OF HIGHER-ORDER NONLINEAR DIFFERENCE EQUATION[J].Acta Mathematica Scientia,2005,25(1):59-66. 被引量:2
  • 2苏有慧,晏兴学.一类有理差分方程的持续生存和渐近性质[J].兰州交通大学学报,2005,24(4):157-159. 被引量:1
  • 3苏有慧,宴兴学.一类非线性时滞差分方程的全局行为[J].兰州理工大学学报,2006,32(1):152-154. 被引量:4
  • 4AGARWAL R P. Difference equations and inequalities [M]. 2nd ed. New York: Marcel Dekker, 1992.
  • 5LI X. Global behavior for a fourth order rational difference equation [J]. Math Anal Appl, 2005,312: 555-563.
  • 6LI X. Qualitative properties for a fourth-order rational difference equation [J]. Math Anal Appl,2005,311:103-111.
  • 7LI X. The rule of semicyele and global asymptotic stability for a fourth-order rational difference equation [J]. Comput Math Appl, 2005,49 : 723-730.
  • 8LI X. Qualitative properties for a fourth-order rational difference equation [J]. Math Anal Appl, 2005,311:103-111.
  • 9LI Zhi, ZHU Deming. Global asymptotic stability of a higher order nonlinear difference equation [J]. Appl Math Lett, 2006, 19:926-930.
  • 10LI Z, ZHU D. Global asymptotic stability of a nonlinear recursire sequence [J]. Appl Math Lett, 2004,17: 833-838.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部