摘要
主要讨论了一类四阶有理差分方程xn+1=(xn-2+xn-3)/(xn-2xn-3+1),n=0,1,2,…,初始值x-3,x-2,x-1,x0∈(0,∞)的振动规律和全局稳定性,即描述了其解的振动周期为15,且正、负半环长的规律为:4+,3-,1+,2-,2+,1-,1+,1-;又指出了解之间存在xn+kΔ(C(xn+k))x(nC(xn+k)C(xn))(n≥-3)的大小关系;并得到了方程的平衡点是全局渐近稳定的.
A fourth-order rational difference equation is considered. The rules of oscillation and global asymptotic stability is described clearly. Mainly, the lengths of positive and negative semi-cycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is 4^+ ,3^- ,1^+ ,2^- ,2^+ ,1^- ,1^+ ,1^- in a period. The relation between solution and solution is xn+kΔ (C (xn+k ) )xn^(C(xn+k)C(xn)) (n ≥ -3 ). By utilizing this rule and relation, its negative equilibrium point is verified to be globally asymptotically stable.
出处
《湖南师范大学自然科学学报》
CAS
北大核心
2009年第4期14-17,共4页
Journal of Natural Science of Hunan Normal University
基金
国家自然科学基金资助项目(10771094)
湖南省教育厅科研重点资助项目(09A080)
关键词
有理差分方程
振动规律
全局渐近稳定
rational difference equation
oscillatory rule
global asymptotic stability