期刊文献+

一种带噪声的周期函数数值微分方法

A Numerical Differentiation Method for Period Function with Noisy Data
下载PDF
导出
摘要 本文利用Thkhonov正则化方法讨论了带有噪声离散数据的周期函数的数值微分问题,证明了该方法存在唯一的三次周期样条函数解,并给出了其误差估计,而且从理论和数值例子说明了此方法的有效性. In this paper,we use the Tikhonov regularization method to discuss the numerical differentiation problem of a period function with noisy data.The unique solution is provided existence,and is a period spline function.The error estimate is also given.The theoretical result and numerical examples prove that our method is applicable.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2009年第2期61-71,共11页 Communication on Applied Mathematics and Computation
关键词 不适定问题 离散数据 TIKHONOV正则化方法 数值微分 周期样条 ill-posed problem, discrete data, Tikhonov regularization method, nu-merical differentiation, period spline
  • 相关文献

参考文献13

  • 1Wang Y.B. , X.Jia, J. ZandCheng. A numerical differentiation method and its application to reconstruction of discontinuity[J]. Inverse Problems,2002, 18: 1461-1476.
  • 2Christian H.Reinsch. Smoothing by Spline Functions[J]. Numerische Mathematik, 1967, 10: 177-183.
  • 3Hristian H.Reinsch. Smoothing by Spline Functions Ⅱ[J]. Numer. Math., 1971, 16: 451-454.
  • 4杨古帆,叶予璋,王盛章.周期函数的数值微分问题[J].复旦学报(自然科学版),2004,43(3):315-322. 被引量:5
  • 5Martin Hanke and Otmar Scherzer. Inverse Problem Light: Numercial Differentiation[J]. THE MATHEMATICAL ASSOCIATION OF AMERICA, 2001, 108: 512-521.
  • 6Huang Jianguo and Chert Yu. A regularization method for the funtion reconstruction from approximate average fluxes[J]. Inverse Problems, 2005, 21: 1667-1684.
  • 7贾现正,王彦博,程晋.散乱数据的数值微分及其误差估计[J].高等学校计算数学学报,2003,25(1):81-90. 被引量:11
  • 8Strang G., Fix G. J. An analysis of the finite element method[M]. NJ: Prentice-Hall, 1973.
  • 9D.A.Murio. Automatic numercal differentiation by discrete mollification[J]. Compputers and Mathematics with Applications, 1987, 13: 381-386.
  • 10Stoer J. and Bulirsch R. Introduction to Numerical Analysis 2nd edn[M]. New York: Springe, 1993.

二级参考文献20

  • 1[1]Cheng, J. and Yamamoto, M.. One new strategy for a priori choice of regularizing parametersin Tikhonov's regularization. Inverse Problems, 2000, 16:L31-L38
  • 2[2]Deans. S.R.. Radon transform and its applications. A Wiley-Interscience Publication, 1983
  • 3[3]Engl, H.W., Hanke, M. and Neubauer. A.. Regularization of Inverse Problems, 1996
  • 4[4]Gorenflo, R. and Vessella, S.. Abel integral equations. Analysis and Applications. Lecture Notes in Mathematics, 1461. Springer-Verlag, Berlin, 1991
  • 5[5]Groetsch, C.W.. The theory of Tikhonov regularization for Fredholm equations of the first kind. Research Notes in Mathematics, 105. Pitman (Advanced Publishing Program), Boston, Mass-London, 1984
  • 6[6]Hammerlin, G. and Hoffmann, K.H.. Numerical mathematics. New York: Springer-Verlag,1991
  • 7[7]Hanke, M. and Scherzer, O.. Inverse problems light: numerical differentiation. Amer. Math. Monthly, 2001, 108(6):512-521
  • 8[8]Hegland, M.. Resolution enhancement of spectra using differentiation. Preprint 1998
  • 9[9]Reinsch, C.H.. Smoothing by spline functions. Numer. Math., 1967, 10:177-183
  • 10[10]Schumaker, L.L.. Spline functions: basic theory. Wiley, New York, 1981

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部