摘要
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若满足:1)uv,uω-∈E(G),v≠,-ωf(uv)≠f (uω-);2)uv∈E G,C(u)≠C(v).则称f是G的点关联邻点可区别全染色法,其所用到的最少颜色数称为图G的点关联邻点可区别全色数.这里C(u)=f(u)∪f(uv)uv∈E(G).得到了扇和轮的倍图的点关联邻点可区别全色数.
Let G be a simple graph, k is a positive integer, f is a mapping from V(G)∪E(G) to {1,2,…,k} such that A↓uv.∈E(G) , then A↓uv.uω ∈E(G),v≠,-ωf(uv)≠f (uω-); A↓uv∈E G,C(u)≠C(v), we say that fis the vertex incidence-adjacent vertex distinguishing total coloring of G. The minimal number of k is called the vertex incidence-adjacent vertex distinguishing total chromatic number of G, whereC(u) = {f(u) } ∪{f(uv) [uv∈ E(G) }. In this paper, we discuss the vertex incidence-adjacent vertex distinguishing total chromatic number of the double graph of Fan and Wheel.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第24期207-210,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(10771091)
井冈山大学自然科学基金(JZ0801)
关键词
扇
轮
倍图
点关联邻点可区别全色数
fan
wheel
double graph
vertex incidence-adjacent vertex distingushing total chromatic number