期刊文献+

基于有偏场校正的MRI脑组织分类法 被引量:2

Bias Field Correction Based Tissue Classification of MR Images of Brain
下载PDF
导出
摘要 核磁共振图像的自动图像分割和组织分类至今仍是一个有待解决的问题。在理想的情况下,各类组织的灰度呈正态分布;但受RF线圈、MR设备的操作环境等的影响,图像的灰度均匀性变差,相当于在增益场上叠加了一个偏移场,使信号产生混淆。作者采用“适配分割算法”,通过计算有偏场,并对图像进行灰度校正。 Automatic segmentation and tissue classification of magnetic resonance images is still problematic in applications.The distribution of the intensities of each tissue class is ideally normal.But in practice,spatial intensity inhomogeneities due to RF coils and the operating conditions of the MR equipment frequently exist which cause the distributions of intensities of different tissues to overlap significantly.The intensity inhomogeneities are modeled with a spatially varying factor called the gain field,on which an additive bias field exists.In this paper,a new method called adaptive segmenation is described.It iteratively estimates the bias field and corrects the intensity inhomogeneities.It has been proved that adaptive segmentation is an effective algorithm of segmenting normal brain tissue.
作者 李响 罗述谦
出处 《北京生物医学工程》 1998年第3期129-135,共7页 Beijing Biomedical Engineering
关键词 NMR 图像 组织分类 适配方割算法 脑组织 Magnetic Resonance Image(MRI) Tissue Classification Adaptive Segmentation Bias Field
  • 相关文献

参考文献1

二级参考文献1

  • 1Chen C C,IEEE Trans MI,1989年,8卷,2期,133页

共引文献3

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部