期刊文献+

广义多圈Lambert算法求解多脉冲最优交会问题 被引量:1

Generalized multiple-revolution Lambert algorithm for solving multiple-impulse rendezvous problem
下载PDF
导出
摘要 基于一种高效高精度的Battin多圈Lambert算法提出一种考虑轨道摄动的广义多圈Lambert算法.与现有算法相比,本算法虽然原理复杂但计算流程非常简单,效率极高,分别通过几次内外循环就可满足精度要求.广义多圈Lambert算法结合一种可行解迭代交会模型构成了一个通用的多圈多脉冲交会规划框架,应用两步法求解此多变量的复杂工程优化问题,首先利用高效率的进化全局优化算法以及解析轨道模型作全局搜索,然后利用序列二次规划算法以及简化高精度轨道计算模型作局部搜索,此方法可以保证高效高精度的求解多圈多脉冲交会问题.算例表明此方法特别适用于满足实际工程约束的交会规划问题. Techniques based on a high efficient high precision Battin multiple-revolution Lambert algorithm were extended to a generalized multiple-revolution Lambert algorithm which can consider orbital perturbations.The approach is difficult to understand but is high efficient with a simple calculation flow which needs only several inner and outer iterations.A unified multiple-revolution multiple-impulse rendezvous planning framework was proposed by combining the generalized multiple-revolution Lambert algorithm and a feasible iteration rendezvous approach.A two-step optimization method was used to solve this difficult multi-variable engineering optimization problem which first utilizing a high efficient evolutionary algorithm with an analytical orbit model for global search,then a sequential quadratic programming algorithm was used with a simplified high precision orbit model for local optimization.The proposed method can guarantee to solve multiple-revolution multiple-impulse rendezvous problem with high efficiency and precision.The demonstration validates that it is very suitable for rendezvous planning problem with practical engineering constraints.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第11期1398-1402,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 交会 轨道动力学 轨道转移 非线性规划 rendezvous orbit dynamics orbit transfer nonlinear programming
  • 相关文献

参考文献11

  • 1Battin R H. An introduction to the mathematics and methods of astrodynamics[ M ]. New York : AIAA, 1987 :237 - 342.
  • 2韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004,24(5):9-14. 被引量:32
  • 3卢山,陈统,徐世杰.基于自适应模拟退火遗传算法的最优Lambert转移[J].北京航空航天大学学报,2007,33(10):1191-1195. 被引量:14
  • 4Loechler L A. An elegant Lambert algorithm for multiple revolution orbits [ D ]. Massachusetts: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1988.
  • 5Shen H J, Tsiotras P. Optimal two-impulse rendezvous using muhiple-revolution Lambert solutions [ J ]. Journal of Guidance, Control, and Dynamics, 2003, 26( 1 ): 50- 61.
  • 6Prussing J E. A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions[ J]. The Journal of the Astronautical Sciences, 2000, 48(2) : 131 -148.
  • 7Shen H J. Optimal scheduling for satellite refuelling in circular orbits[ D]. Georgia: School of Aerospace Engineering, Georgia Institute of Technology, 2003.
  • 8Hughes S P, Mailhe L M, Guzman J J. A comparison of trajectory optimization methods for the impulsive minimum fuel rendezvous problem [ J ]. Advances in the Astronautical Sciences, 2003, 113:85 - 104.
  • 9Luo Yazhong, Tang Guojing, Lei Yongjun, et al. Optimization of multiple-impulse multiple-revolution rendezvous phasing maneuvers [ J ]. Journal of Guidance, Control, and Dynamics, 2007, 30(4) : 946 -952.
  • 10Xie Xiaofeng, Zhang Weujun. Solving engineering design problems by social cognitive optimization [ C ]//Kalyanmov D, Riccardo P. Genetic and Evolutionary Computation Conference. Berlin :Springer, 2004:261 - 262.

二级参考文献22

  • 1韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004,24(5):9-14. 被引量:32
  • 2BATTIN R H.An Introduction to the Mathematics and Methods of Astrodynamics[M].New York; AIAA,1987.
  • 3ITRF.International Terrestrial Reference Frame.2007.[2007-10-10].http://itrf.ensg.ign.fr/.
  • 4SOFA.Standards Of Fundamental Astronomy.Oxfordshire,United Kingdom:IAU SOFA Center,2007.[2007-10-10].www.iau-sofa.rl.ac.uk.
  • 5VALLADO D A.Fundamentals of Astrodynamics and Applica-tions[C].Third Edition.California; Microscosm Press,2007.
  • 6SEIDELMANN P K.Explanatory supplement to the astronomical almanac[C].California:University Science,1992.
  • 7HUJSAK R S.Gravity acceleration approximation function[J].Advances in the Astronautical Sciences,1996,93:335 -349.
  • 8PRESS W H,TEUKOLSKY S A,Vetterling W T,Flannery B P.Numerical Recipes in C + +,The Art of Scientific Computing.Second Edition[M].Beijing; Publishing House of Electronics Industry,2003.
  • 9ABRAMOWITZ M,Stegun I A.Handbook of MathematicalFunctions[M].New York; Dover Publication,1965.
  • 10GOLDSTEIN D B.Real-Time.Autonomous precise satellite orbit determination using global positioning system[D].PhD thesis.Colorado:University of Colorado,2000.

共引文献48

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部