期刊文献+

多目标优化问题的求解框架 被引量:3

A Framework for Multi-objective Optimization Problem Solving
下载PDF
导出
摘要 为多目标优化问题设计有效算法相当困难,且得到的算法缺乏复用性。本文提出一个求解框架,对问题特征分类,特征类型对应框架中的模块,具体特征由模块中的策略处理,策略成为可复用的。模块和策略的分析与总结使为问题选择合适策略组成算法变得简单。 Designing efficient algorithms for multi-objective optimization problems is always hard and the obtained algorithms are not reusable. A framework is thus proposed,through classifying problem features,the category corresponds to the module of the frame-work while the concrete feature is processed by the strategy in the module,and strategies become reusable. The analysis and summarization of modules and strategies makes it easier to choose proper strategies to compose the algorithm for the problem.
作者 徐鹤鸣 王东
出处 《微计算机信息》 2009年第36期164-165,168,共3页 Control & Automation
关键词 多目标优化问题 框架 模块 策略 粒子群优化 Multi-objective Optimization Problem Framework Module Strategy Particle Swarm Optimization
  • 相关文献

参考文献6

  • 1J Kennedy, R C Eberhart. Particle Swarm Optimization [C]. IEEE International Conference on Neural Networks. Piscataway, NJ, USA : IEEE Service Center, 1995 : 1942-1948.
  • 2于万霞,杜太行,郑宏兴,于越.基于粒子群的模糊神经网络交通流量预测[J].微计算机信息,2008,24(4):232-233. 被引量:10
  • 3Bo Liu, Ling Wang, Yi-Hui Jin. An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics, 2007 , 37 (1): 18-27.
  • 4Y SOng, M H Lira, N Zhu, etc. Classification of adaptive memetic algorithms: A comparative study [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics, 2006 , 36 (1): 141 - 152.
  • 5C A Coello Coello, G T Pulido, M S Lechuga. Handling Multiple Objectives With Particle Swarm Optimization [J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3): 256-279.
  • 6R A Krohling, Leandro dos Santos Coelho. Coevolutionary Particle Swarm Optimization Using Ganssian Distribution for Solving Constrained Optimization Problems [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics , 2006 , 36 (6): 1407-1416.

二级参考文献7

  • 1张毅,罗元.基于人工神经网络城市交通流量智能预测的研究[J].重庆邮电学院学报(自然科学版),2005,17(2):241-243. 被引量:15
  • 2王翠茹,冯海迅,张江维,袁和金.基于改进粒子群优化算法求解旅行商问题[J].微计算机信息,2006(08S):273-275. 被引量:20
  • 3[1]Smith B L,Demetsky M J.Traffic Flow Forecasting.Comparison of Modeling Approaches[J].J.of Transportation Engineering.1997,123(4):62-266.
  • 4[2]Long Chen,Fei-yue Wang.A Neoro fuzzy System Approach for Forecasting Short Term Traffic Flows[C].Proc of the IEEE 5th International Conference on Intelligent Transportation Systems,2002:451-471.
  • 5[4]Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc.IEEE International Conference on Neural Networks,Ⅳ[C].Piscataway,J:EEE Service Center,1995:1942-1948.
  • 6[6]Shi Yu-hui,Russell Eberhart.A modified particle swarm optimizer[C].EEE World Congress on Computation intelligence,1998:69-73.
  • 7况爱武,黄中祥.基于RBF神经网络的短时交通流预测[J].系统工程,2004,22(2):63-65. 被引量:23

共引文献9

同被引文献17

  • 1贺升平,覃征.一种新的机动目标功能合群算法[J].微电子学与计算机,2006,23(6):16-19. 被引量:6
  • 2张更新,郦苏丹,甘仲民.IGSO在卫星移动通信中的应用研究[J].通信学报,2006,27(8):148-154. 被引量:6
  • 3杨美和.长白山森林火险预报方法研究[J].吉林林业科技,1983,(1).
  • 4牛若芸,翟盘茂,佘万明.森林火险气象指数的应用研究[J].应用气象学报,2007,18(4):479-489. 被引量:46
  • 5王正非,朱廷曜,朱劲伟,等.森林气象学[M].北京:中国林业出版社,1982.
  • 6E.L.Ulungu, J.Teghem, P.H.Fortemps, etc. MOSA Method: A Tool for Solving Muhiobjective Combinatorial Optimization Problems [J]. Journal of Multi-Criteria Decision Analysis, 1999. 8(4):222-233.
  • 7Zhang Huaguang,Quan Yongbing. Modeling, Identification, and Control of a Class of Nonlinear Systems [A]. IEEE TRANSACTIONS ON FUZZY SYSTEMS[C]. 2001.349-354.
  • 8Yang, Ang. A networked multi-agent combat model: emergence explained[D]. Australian:University of New South Wales,2007.
  • 9Walker J G. Satellite Constellation [J].Journal of the British Interplanetary Society, 1984, 37:559-571.
  • 10Jilla C D. A muhi-objective, multi-disciplinary design optimization methodology for the con-ceptual design of distributed satellite systems [D]. Cambridge: Massachusetts Institute of Technology, 2002: 353-415.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部