期刊文献+

问答系统中意见型疑问句的分类方法研究

A study of opinion question sentence classification in Question & Answering system
下载PDF
导出
摘要 问答系统是自然语言处理领域中一个非常热门的研究方向,当前主流的问答系统主要处理的问题类型大多是问时间、地点、人物等事实性疑问句。本文针对用户提出的对特定领域的产品好坏发表疑问情感性问题作出处理,结合模式匹配算法拥有较高的准确性和语言模型算法拥有较高的召回率,创新性地提出意见型疑问句的分类方法:模式匹配算法结合语言模型算法生成混合模型。首先利用模式匹配算法对问句进行分类,对于不能处理的问句,交给一元或二元语言语言模型算法进行分类。此模型通过试验证明了其有效性。 Question & Answering is a very hot area of natural language processing. The current mainstream of Question & Answering systems are based on time,place,character. In this paper,we dispose the emotional issues which proposed by the users in a special domain. In order to get a high precision and recall,we combined pattern matching and some language model algorithms,and put forward a classification of opinion-question method. First,we use pattern matching to make a classification of the question,if it doesn't work, make another classification by the unigram and bigram language model. At last, The experiment proved the validity of this model.
出处 《微计算机信息》 2009年第36期166-168,共3页 Control & Automation
关键词 问答系统 模式匹配 语言模型 标签 Question &amp Answering pattern matching language model label
  • 相关文献

参考文献6

  • 1郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:165
  • 2山岚,赵英,徐耀,王坚,张莹莹.专业搜索引擎系统的设计与实现[J].微计算机信息,2007,23(02X):179-180. 被引量:8
  • 3Soo-Min Kim, Eduard Hovy. Determining the Sentiment of Opinions. In Proceedings of COLING, 2004.
  • 4Dell Zhang,Wee Sun Lee. Question classification using support vector machines [A]. In: the 26th ACM SIGIR[C]. 2003.
  • 5Xin li, Dan Roth. Learning Question Classifiers [A]. In: COL- ING 2002, The 19th International Conference on Computational Linguistics[C], 2002: 556-562.
  • 6Carlson, C. Cumby, J. Rosen, et al. The SNoW learning architecture [A]. In: UIUCDCS- -R-99-2101, UIUC Computer Science Department[C], 1999.

二级参考文献15

  • 1胡利平,胡亮,高文.一个实用型智能化元搜索引擎的设计与实现[J].微计算机信息,2005,21(11X):159-161. 被引量:4
  • 2倪坚,陈世平,胡成梅.分布式计算在Web信息检索中的应用[J].微计算机信息,2006(01X):120-122. 被引量:13
  • 3[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 4[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 5[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 6[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 7[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 8[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 9[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 10[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部