期刊文献+

无线多媒体传感器网络中基于多类传感器信息的分布式视频处理 被引量:3

Multi-modal Sensors Information Based Distributed Video Processing for Wireless Multimedia Sensor Networks
下载PDF
导出
摘要 无线多媒体传感器网络中的多媒体传感器节点的功率、计算和存储能力及带宽资源受限,迫切需要低复杂度的视频处理技术对大数据量的视频进行压缩传输。基于来自网络中监控同一目标场景的多种类型传感器的信息,给出了一个新的无线多媒体传感器网络分布式视频处理系统框架;提出了一种基于多类型传感数据融合和多视角的GOP(group of picture)划分方法;在解码端,考虑单一视角视频序列之间较强的时间相关性,产生时间相关的边信息;利用来自多个视频传感节点的视频序列间的空间多视角相关性,产生多视角相关的边信息,并提供两种边信息的融合和选择机制,提高边信息的准确度和可靠性。最后仿真实验结果表明该方法的有效性和优越性。 In wireless muhimedia sensor networks (WMSN) , sensor devices are constrained in terms of-power, processing, memory and bandwidth capability. Low-complexity video processing technique is highly desired to encode and transmit large numbers of video data. Based on the information from multi-modal sensors which monitor the same scene, a new framework of distributed video processing system for WMSN is presented. A group of pictures (GOP) partition algorithm based on multi-modal data and multi-view is also put forward. In the decoder, considering the temporal correlation between adjacent frames from single view, temporal side information is generated. Multi-view side information is acquired by using spatial correlation among the frames from adjacent video sensors. In order to improve the prediction accuracy and reliability, a mechanism to fusion and select two kinds of side information is provided. The validity and advantage of the proposed method are verified through simulations.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第1期161-166,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60573141 60773041 60973139) 国家高技术研究发展计划(863)基金项目(2006AA01Z201 2006AA01Z219) 南京市高科技项目(2007软资106) 现代通信国家重点实验室基金项目(9140C1105040805) 江苏省博士后基金项目(0801019C) 六大高峰人才计划 江苏高校科技创新计划基金项目(CX08B-085Z CX08B-086Z)
关键词 无线多媒体传感器网络 分布式视频编码 多类传感器 图片组(GOP) 信息融合 边信息 wireless multimedia sensor networks, distributed video coding, multi-modal sensors, group of pictures (GOP) , information fusion, side information
  • 相关文献

参考文献12

  • 1Akyildiz I F, Melodia T, Chowdhury K R. A survey on wireless multimedia sensor networks [ J ]. Computer Networks, 2007, 51(4): 921-960.
  • 2ITU-T. H. 263: Video Coding for Low Bit Rate Communication [ EB/OL]. [ 2008- 02- 16 ] http://www, itu. int/rec/T-REC-H. 263/e.
  • 3ITU-T. H. 264: Advanced Video Coding for Generic Audiovisual services [ EB/OL]. [ 2008- 02- 16 ]. http://www, itu. int/ree/ T-REC-H. 264/e.
  • 4Girod B, Aaron A M, Rane S, et al. Distributed video coding [J]. Proceedings of the IEEE, Special Issue on Video Coding and Delivery, 2005, 93 ( 1 ) : 71 - 83.
  • 5Slepian D, Wolf J K. Noiseless coding of correlated information sources [ J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480.
  • 6Wyner A D. On source coding with side information at the decoder [ J]. IEEE Transantions on Information Theory, 1975, 21 (3) : 294-300.
  • 7Purl R, Majumdar A, Ishwar P, et al. Distributed video coding in wireless sensor networks [J]. IEEE Signal Processing Magazine, 2006, 23(4): 94-106.
  • 8Aaron A, Rane S, Zhang R, et al. Wyner-Ziv coding for video: Applications to compression and error resilience [ C]//Proceedings of IEEE Data Compression Conference . Snowbird, Utah, USA : IEEE Computer Society Press, 2003: 93-102.
  • 9Aaron A, Setton E, Girod B. Towards practical Wyner-Ziv coding of video [ C ]//Proceedings of IEEE 2003 International Conference on Image Processing. Barcelona, Spain: IEEE Press, 2003: 869- 872.
  • 10Aaron A, Rane S, Setton E, et al. Transform-domain Wyner-Ziv Codec for Video [ EB/OL]. [ 2008- 03- 12 ]. http://www, stan- ford. edu/- bgirod/pdfs/AaronVCIP04, pdf.

同被引文献29

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2高岩,熊建设.周界防越报警数据融合系统的实现方法[J].山东理工大学学报(自然科学版),2007,21(3):74-76. 被引量:1
  • 3Rohit Puri, Abhik Majumdar, Prakash Ishwar. Distributed video coding in wireless sensor networks I-J]. IEEE Signal Processing Magazine, 2006, 23 (4) 7: 94-106.
  • 4Donoho D, Yaakov Tsaig. Fast solution of 1-norm minimization problems when the solution may be sparse [J]. IEEE Transactions on Information Theory, 2008, 54 (11): 4789-4812.
  • 5Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306.
  • 6Do T T, Chen Y, Nguyen D T. Distributed compressed video sensing [C]//Cairo: Image Processing, 2009:1393-1396.
  • 7Allen Y Yang, Subhransu Maji, Mario Christoudias C. Multiple view object recognition in band-limited distributed camera networks[C] //Como: Distributed Smart Cameras, 2009:1-8.
  • 8Xu Chen, Pascal Frossard. Joint reconstruction of compressed multi-view images [C]//Proc IEEE ICASSP, 2009: 1005-1008.
  • 9Maria Trocan, Thomas Maugey. Compressed sensing of multiview images using disparity compensation [C] //Proceedings of IEEE 17th International Confe-rence on Image Processing, 2010: 3345-3348.
  • 10Artigas X, Tarres F, Torres L. Comparison of different side information generation methods for multiview distributed video coding [C]//Barcelona, Spain: Proc International Conference on Signal Processing and Multimedia Applications, 2008: 589-599.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部