期刊文献+

基于IMM滤波器的纯方位机动目标跟踪 被引量:4

IMM Filter with Application to Bearings-only Passive Maneuvering Target Tracking
下载PDF
导出
摘要 针对无源纯方位跟踪中目标机动的问题,提出了一种基于交互式多模型的目标跟踪算法。该算法用伪量测变换估计器(PLE)将纯方位跟踪中非线性观测模型线性化,避免了计算雅克比行列式。机动目标跟踪中通过实时调整模型匹配概率,提高了滤波器对状态变化的跟踪能力。同时该算法实时修正观测噪声协方差,消除目标远离基阵时观测噪声对目标定位的影响。最后通过与MGEKF进行比较,Monte Carlo仿真结果验证了该算法的优越性。 A new IMM filter is presented for the problem of bearings-only passive maneuvering target tracking. Before the IMM filter, a pseudo-linear estimation (PLE) is used to restructure the nonlinear measurement equation, it has a brief form and little computation. The algorithm has strong robustness against model mismatching by updating the mode probability on-line, and it can avoid big error caused by searching inaccurate modified function and detecting maneuvering in Modified Gain EKP (MGEKF) algorithm. By adjusting the measurement covariance on-line, new IMM filter can eliminate the effect of measurement noise to target location when target far from sensor. At last, Monte Carlo simulation results show that this algorithm is better than MGEKF.
出处 《火力与指挥控制》 CSCD 北大核心 2010年第1期20-23,共4页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60434020 60602049)
关键词 纯方位角 伪线性 IMM算法 目标机动 bearings-only, pseudo-linearing, IMM algorithm, target maneuvering
  • 相关文献

参考文献9

  • 1Song T L, Speyer J. A Stochastic Analysis of a Modified Gain Extended Kalman Filter with Applications to Estimation with Bearings Only Measurements [J]. IEEE Trans. on Automatic Control, 1985, AC-30(10): 940-949.
  • 2Galkowski P,Islam M. An Alternative Derivation of the Modified Gain Function of Song and Speyer[J]. IEEE Trans. on Automatic Control, 1991, AC-36 (11):1322-1326.
  • 3Koteswara S R. Modified Gain Extended Kalman Filter with Application to Bearings-only Passive Manoeuvering Target Tracking [J]. IEEE Proc.- Radar Sonar Navig, 2005,152 (4) :239-244.
  • 4Blom H A, Bar-Shalom Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients[J]. IEEE Trans. on Automatic Control, 1988, 33(8) : 780-783.
  • 5Li X R, Bar-Shalom Y. Prediction of Interacting Multiple Model Algorithm [J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29 (3) : 755-771.
  • 6李辉,沈莹,张安,程琤.交互式多模型目标跟踪的研究现状及发展趋势[J].火力与指挥控制,2006,31(11):1-4. 被引量:26
  • 7Koteswara S R. Pseudo-linear Estimator for Bearing-only Passive Tracking, Radar Sonar and Navigation[J]. IEEE Proceedings, 2001,148:16-22.
  • 8辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 9Doucet A. On Sequential Monte Carlo Methods for Bayesian Filtering [D]. University of Cambridge, UK, Department of Engineering,1998.

二级参考文献28

  • 1李涛,王宝树,乔向东.曲线模型的半自适应交互多模型跟踪方法[J].电子学报,2005,33(2):332-335. 被引量:13
  • 2Song T L, Speyer J L. A stochastic analysis of a modified gain extended kalman filter with applications to estimation with bearing only measurements [ J ]. IEEE Trans Autom Control, 1985, 30(10): 940-949
  • 3Aidala V J, Hammel S E. Utilization of modified polar coordinates for bearings only tracking [ J ]. IEEE Trans Autom Control, 1983,28(3): 283-294
  • 4Grossman W. Bearing only tracking: A hybrid coordinate system approach [J]. J Guid Control Dyn. 17(3), 1994:451-457
  • 5Lindgren A G, Gong K F. Position and velocity estimation via bearing observations [ J ]. IEEE Trans Aerosp Electron Syst. , 1978,14(5): 564-577
  • 6Aidala V J. Kalman filter behaviour in bearings only tracking applications. IEEE Trans Aerosp Electron Syst. , 1979,15(1): 29-39
  • 7Aidala V J, Nardone S C. Biased estimation properties of the pseudo linear tracking filter [ J ]. IEEE Trans Aerosp Electron Syst. , 1982,18(4) : 432-441
  • 8S. Koteswara Rao. Pseudo-linear estimator for bearings-only passive target tracking [ J ]. IEE Proc Radar Sonar Navig. ,2001,48(1 ): 16-22
  • 9Munir A,Atherton D P.Maneuvering Target Tracking Using an Adaptive Interacting Multiple Model Algorithm[A].Proceedings of American Control Conference[C].1994,2:1324-1328.
  • 10Mazor E,Averbu Cha,Bar-Shlom Y,et al.Interacting Multiple Model Methods in Target Tracking:A Survey[J].IEEE Trans.On Aerospace and Electronic Systems,1998,34(1):103-123.

共引文献39

同被引文献28

  • 1巴宏欣,赵宗贵,杨飞,曹雷.多传感器多目标跟踪的JPDA算法[J].系统仿真学报,2004,16(7):1563-1566. 被引量:16
  • 2何友,关欣,王国宏.多传感器信息融合研究进展与展望[J].宇航学报,2005,26(4):524-530. 被引量:61
  • 3刘凯,苗艳,袁富宇.用于纯方位机动目标跟踪的机动探测法[J].指挥控制与仿真,2006,28(2):30-34. 被引量:8
  • 4BlomHAP,Bar-shalomY.TheInteractingMultiplemodelAlgorithmforSystemswithMarkovianSwitchingCoefficients[J].IEEETrans.onAutomaticControl,1988,AC-33(8):780-783.
  • 5MazorE,AverbuchAY,ShalomB.InteractingMultipleModelMethodsinTargetTracking:ASurvey[J].IEEETrans.onAerospaceandElectronicSystems,1998,34(1):103-122.
  • 6Byung-DooK,Ja-SungL.IMMalgorithmBasedontheAnalyticSolutionofSteadyStateKalmanFilterforRadarTargetTracking[C] //2005IEEEInternationalRadarConference,Arlington,Virginia,USA,2005:757-762.
  • 7LiXR,JilkovVP.SurveyofManeuveringTargetTracking.part5:MultipleModelMethods[J].IEEERansactionsonAerospaceandElectronicSystems,2005,41(4):112-115.
  • 8SingerRA.EstimatingOptimalFilterTrackingPerformanceforMannedManeuveringTargets[J].IEEETransactionsonAerospaceandElectronicSystems,1970,6:473-483.
  • 9FitzgeraldRJ.SimpleTrackingFilters:SteadystateFilteringandSmoothingPerformance[J].IEEETransactionsonAerospaceandElectronicSystems,1980,16:860-864.
  • 10Goldenberg F. Geomagnetic navigation beyond magnetic compass [ A ]. In San Diego, Proceeding of position location.and navigation symposium [ C ]. California: IEEE Press, 2006 : 684 - 694.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部