期刊文献+

基于最大熵模型的观点句主观关系提取 被引量:16

Extraction of Subjective Relation in Opinion Sentences Based on Maximum Entropy Model
下载PDF
导出
摘要 提出一种提取中文观点句中评价对象和评价词主观匹配关系的方法。分析观点句中评价词和评价对象的词性、词语位置,通过句法分析获取语义特征,将2类特征应用于最大熵模型,提取观点句的主观关系。实验结果证明,与取距离评价词语最近的词作为评价对象的Baseline方法相比,该方法大幅度提高了准确率和F测试值。 This paper presents a novel method of extracting subjective relation between opinion targets and opinion-bearing words in Chinese opinion sentences. This method analyzes lexical and part of speech information in the sentence. Syntactic analyzing is adopted to achieve syntactic path information which is regerded as semantic feature. The two kinds of feature are both applied in maximum entropy model. According to this model,all subjective relations in the sentence are extracted. Experimental results show that this method is better than Baseline method in precision rate and F-measure.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第2期4-6,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60803151)
关键词 评价对象 主观关系 最大熵 句法分析 opinion target subjective relation maximum entropy syntactic analysis
  • 相关文献

参考文献5

  • 1Nasukawa T, Jeonghee Y. Sentiment Analysis: Capturing Favorability Using Natural Language Processing[C]//Proc. of K-CAP'03. Sanibel Island, Florida, USA: [s. n.], 2005: 23-35.
  • 2Popescu A M, Etzioni O. Extracting Product Features and Opinions from Reviews[C]//Proceedings of EMNLP'05. Vancouver, Canada: [s. n.], 2005: 145-153.
  • 3Liu Bing, Hu Minqing, Cheng Junsheng. Opinion Observer: Analyzing and Comparing Opinions on the Web[C]//Proceedings of the 14th International Conference on World Wide Web. [S.l.]: IEEE Press, 2006: 221-229.
  • 4Kim Soo-Min, Hovy E. Extracting Opinions, Opinion Holders, and Topics Expressed in Online News Media Text[C]//Proc. of Conf. of Association for Computational Lingustics. [S. l.]: IEEE Press, 2007: 318-327.
  • 5Chen S F, Rosenfeld R. A Gaussian Prior for Smoothing Maximum Entropy Models[D]. School of Computer Science, Carnegie Mellon University, 1999.

同被引文献136

引证文献16

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部