期刊文献+

PSO优化BP神经网络入侵检测模型 被引量:7

Intrusion Detection Model Based on PSO Optimized BP Neural Network
原文传递
导出
摘要 文中提出了一种基于变惯性因子粒子群优化的BP网络学习算法。该算法用PSO算法代替了传统的BP算法,克服了BP算法易陷入局部最小值的不足,并且将该算法应用于入侵检测中。在预处理数据时,采用了信息增益的方法,提取出含信息量多的特征作为BP网络的输入向量。通过实验仿真比较,证明了该算法的收敛速度快,迭代次数少,准确率较高。 This paper proposes a BP networks learning algorithm based on changed inertia particle swam optimization algorithm. This algorithm substitutes the traditional BP algorithm, overcomes the problem that the traditional BP algorithm would be easy to fall into the local minima, and thus is applied to intrusion detection. Information gain is used in data preprocessing, the characteristics with much information are extracted as the input vectors of BP network. Simulation and comparison indicate that the BP networks based on changed inertia particle swam optimization algorithm is of faster convergence rate, less iterations, and higher accuracy.
作者 傅德胜 张媛
出处 《通信技术》 2010年第1期81-83,共3页 Communications Technology
关键词 入侵检测 粒子群优化 BP神经网络 信息增益 intrusion detection particle swam optimization BP neural networks information gain
  • 相关文献

参考文献6

二级参考文献48

  • 1桑庆兵,杨兴,史慧.基于COM组件的通用故障诊断专家系统开发[J].微计算机信息,2006,22(02S):190-192. 被引量:14
  • 2王飚舵,朱衡君,余祖俊,刘维强.基于专家系统和神经网络的机车电路故障诊断系统研究[J].北方交通大学学报,1996,20(4):495-501. 被引量:14
  • 3赵宏宇.网络入侵检测技术研究.四川大学学报,2003,(12):13-15.
  • 4Vigna G, KenunererRA, Nets TAT. A Network-based Intrusion DetectionSystem[J]. Journal of Computer Security, 2006, 7(1): 512-515.
  • 5[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 6[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 7[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 8[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 9[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 10[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.

共引文献195

同被引文献51

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部