期刊文献+

On Inherent Irreversibility in a Reactive Hydromagnetic Channel Flow 被引量:1

On Inherent Irreversibility in a Reactive Hydromagnetic Channel Flow
原文传递
导出
摘要 This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a transversely imposed magnetic field.Using a perturbation method coupled with a special type of Hermite-Pade' approximation technique,the simplified governing non-linear equation is solved and the important properties of overall flow structure including velocity field,temperature field and thermal criticality conditions are derived which essentially expedite to obtain expressions for volumetric entropy generation numbers,irreversibility distribution ratio and the Bejan number in the flow field. This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a transversely imposed magnetic field. Using a perturbation method coupled with a special type of Hermite-Pade" approximation technique, the simplified governing non-linear equation is solved and the important properties of overall flow structure including velocity field, temperature field and thermal criticality conditions are derived which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number in the flow field.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第1期72-79,共8页 热科学学报(英文版)
关键词 流体通道 流动结构 不可逆性 HERMITE 不可逆转性 无磁 PADÉ逼近 热稳定性 Hydromagnetic channel flow Entropy analysis Thermal criticality Arrhenius kinetics Hermite-Pade approximants
  • 相关文献

参考文献32

  • 1Ariel, E D.: On computation of MHD flow near a rotating disk, Zeitschrifl fiJr Angewandte Mathematik und Mechanik, 82, 4, 235-246, (2002).
  • 2Anwar, M. I., Rodkiewicz, C. M.: Nonuniform magnetic field effects in MHD slider bearings, ASME J Lubric Technol. Vol.94, 101-105, (1972).
  • 3Bebernes, J., Eberly, D.: Mathematical problems from combustion theory, Springer-Verlag, New York, (1989).
  • 4Berkovsky, B. M., Medvedev, V. F., Krakov, M. S.: Magnetic Fluids, Engineering Applications, Oxford University Press, Oxford, New York, Tokyo, (1993).
  • 5Bejan, A.: Entropy generation through heat and fluid flow, John Wiley & Sons. Inc.: Canada, Chapter 5, p98, (1994).
  • 6Bejan, A.: Entropy generation minimization, CRC Press, Boca Raton, Florida, (1996).
  • 7Bowes, P. C.: Self-heating: Evaluating and controlling the hazard, Elsevier, Amsterdam (1984).
  • 8Borkakati, A. K., Bharali, A.: Heat transfer in a hydro- magnetic flow between two porous disks- one rotating and other at rest, under uniform suction, Applied Scien- tific Research, 35, 2-3, 161-175, (1979).
  • 9Chamkha, A. J., Al-Mudhaf, A.: Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects, Int. J. Thermal Sciences, 44, 3,267-276, (2005).
  • 10Das, N. C.: A study of optimal load-bearing capacity for slider bearing lubricated with couple stress fluids in magnetic field, Tribol Int. Vol.31,393-400, (1998).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部