期刊文献+

基于下肢角度特征的步态识别方法

Gait Recognition Based on Lower-limb Angles
下载PDF
导出
摘要 基于人行走时的下肢角度变化包含丰富的个体识别信.幽观点,提出利用下肢角度特征进行步态识别的新方法。对每个步态序列,依据人体解剖学的先验知识定位下肢关节点,计算相邻关节点连线与竖直线的夹角,以此作为下肢角度;通过步态周期分析,提取一个步态周期的下肢角度变化序列作为特征向量表征步态。最后,采用针对小样本问题具有很好分类效果的支持向量机技术实现步态的分类决策。CASIA步态数据库上的仿真结果证明本方法具有较高的识别性能。 Based on the idea that lower-limb angles of motion body contained rich information of human identification, a gait recognition method based on lower-limb angles was proposed in the paper. For each gait sequence, according to the knowledge in body anatomy, the coordinates of lower-limb joints were obtained. Then got four different angles of lower limbs. With analysis of gait cycle, the trajectories of lower-limb angles in one cycle were extracted as feature vectors. Support Vector Machine (SVM) which has an effective classify ability for small sample problem was used for gait classification. Experimental results on CASIA database demonstrate that the approach has encouraging recognition performance.
作者 曾莹 刘波 ZENG Ying, LIU Bo (Eastern Science and Technology College, Hunan Agricultural University, Changsha 410128, China)
出处 《电脑知识与技术》 2010年第01Z期403-405,共3页 Computer Knowledge and Technology
基金 湖南省科技厅科学基金项目(2009CK4010) 湖南农业大学引进人才科学基金项目(08YJ13)
关键词 步态识别 支持向量机 下肢角度 轮廓特征 步态周期 gait recognition support vector machine(SVM) lower-limb angle silhouette feature gait cycle
  • 相关文献

参考文献9

  • 1田光见,赵荣椿.步态识别综述[J].计算机应用研究,2005,22(5):20-22. 被引量:16
  • 2刘向东,陈兆乾.基于支持向量机方法的人脸识别研究[J].小型微型计算机系统,2004,25(12):2261-2263. 被引量:6
  • 3王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 4柳回春,马树元.支持向量机的研究现状[J].中国图象图形学报(A辑),2002,7(6):618-623. 被引量:64
  • 5Liang Wang,Huazhong Ning,Weiming Hu,et al.Gait recognition based on procrustes shape analysis. Proceedings of the Ninth IEEE International Conference on Image Processing . 2002
  • 6Cunado D,Nixon M S,CARTER J.Automatic Extraction and Description of Human Gait Models for Recognition Purposes. Computer Vision and Image Understanding . 2003
  • 7Collins R.T,Gross R,Jianbo S.Silhouette-based human identification from body shape and gait. Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition . 2002
  • 8Kale A,Cuntoor N,Yegnanarayana B,et al.Gait analysis for human identification. Proceedings of the Fourth International Conference on Audio- and Video-Based Biometric Person Authentication . 2003
  • 9Yoo J H,Nixon M S,Harris C J.Extracting Human Gait Signatures by Body Segment Properties. Proceedings of the Fifth IEEE Southwest Symposium on Image Analysis and Interpretation . 2002

二级参考文献48

  • 1Lily Lee.Gait Analysis for Classification[R].AI Technical Report 2003-014,Massachusetts Institute of Technology-artificial Intelligence Laboratory,2003.
  • 2J D Nixon, M S, Harris C J.Statistical Gait Description via Temporal Moments[C]. Proceedings of Proc. 4th IEEE Southwest Symposium on Image Analysis and Interpretation,2000.291-295.
  • 3Shutler J D, Nixon M S Zernike Velocity Moments for Description and Recognition of Moving Shapes[C]. Proceedings of Proc. BMVC, 2001.705-714.
  • 4A Murat Tekalp.Digital Video Processing[M]. Prentice-Hall Press, 1996.
  • 5Lipton A, Fujiyoshi H, Patil R. Moving Target Classification and Tracking From Real-time Video[C]. NJ: Proc. IEEE Workshop on Applications of Computer Vision.Princeton, 1998. 8-14.
  • 6Anderson C, et al. Change Detection and Tracking Using Pyramids Transformation Techniques[C]. Cambridge, MA:Proc. SPIE Confe-rence on Intelligent Robots and Computer Vision, 1985.72-78.
  • 7Foresti G L.Object Recognition and Tracking for Remote Video Surveillance[J].IEEE Transactions on Circuits and Systems for Video Technology, 1999,9(7):1045-1062.
  • 8Haritaoglu I, Harwood D,et al.W/sup 4/: Who? When? Where? What? A Real-time System for Detecting and Tracking People[C]. Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998.222-227.
  • 9Stringa E,et al.Real-time Video-shot Detection for Scene Surveillance Applications[J].IEEE Transactions on Image Processing, 2000, 1(9):69-79.
  • 10Toyama K, Krumm J,et al. Wallflower: Principles and Practice of Background Maintenance[C]. Proceedings of the 7th IEEE International Conference on Computer Vision, 1999.255-261.

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部