期刊文献+

使用图像分割的遮挡恢复立体匹配算法 被引量:5

Handling occlusions method for stereo correspondence using graph cuts
原文传递
导出
摘要 针对立体匹配在稀疏纹理、重复纹理、深度不连续和遮挡区域存在的问题,提出了一种高效的立体匹配算法.该算法主要由像素匹配代价计算和视差图全局优化2个步骤组成.为了大幅减少当前算法在场景深度不连续处所产生的过渡平滑现象和在稀疏纹理处产生的错误匹配,采用基于图像采样噪声无关的自适应权重加窗匹配算法.为了求解遮挡区域和不连续性区域的像素视差,使用遮挡和平滑惩罚代价来约束整幅视差图,并采用基于图像分割的能量最小化方法求取最优解.实验结果表明,相比于局部和全局算法,该算法可以更快且准确地计算稀疏纹理、不连续性和遮挡区域的像素视差. For the difficult points of stereo correspondence in the areas with sparse textures, patterns, discontinuities or occlusions, an efficient algorithm is proposed. It mainly consists of two steps: pixel matching cost computation and global optimization of the disparity map sequentially. The first step adopts a special pixel matching algorithm with adaptive weights, which is insensitive to image sampiing, so that both over-smoothing problems in discontinuities and disparity errors in sparse textural areas caused by current methods can be sharply reduced. The second step can explicitly integrate both occlusion and discontinuity costs into the energy functions to regularize the disparity map, and the optimum can be solved rapidly by graph-cut based energy minimization. The final experimental results have verified, compared with local and global methods separately, the proposal is faster and more accurate to estimate disparities of the areas with sparse textures, discontinuities or occlusions.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期81-84,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 高等学校科技创新工程重大项目培育资助项目(708065)
关键词 图像处理 立体匹配 视差 图像分割 遮挡对象 最小化 image processing stereo correspondence disparity graph cuts occluding objects minimisation
  • 相关文献

参考文献15

  • 1Zhu Qingbo, Wang Hongyuan, Tian Wen. A practical new approach to 3D scene reeovery[J]. Signal Processing, 2009, 89(11): 2 152-2 158.
  • 2Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. Int'l J Computer Vision, 2002, 47(1-3) : 7-42.
  • 3Yoon K J, Kwen I S. Adaptive support-weight approach for correspondence search[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2006, 28 (4) : 650-656.
  • 4Gerrits M, Bekaert P. Local stereo matching with segmentation-based outlier rejection[C]//Proe IEEE 3rd Canadian Conf Computer and Robot Vision. Quebec: IEEE, 2006: 1-7.
  • 5Tombari F, Mattoccia S, Stefano L D. Segmentation- based adaptive support for accruate stereo correspondence[C] //Springer Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2007: 427-438.
  • 6Tombari F, Mattoecia S, Stefano L D. Classification and evaluation of cost aggregation methods for stereo eorrespondence[C] //Proe IEEE CS Conf Comoputer Vision and Pattern Recognition. Anchorage: IEEE, 2008 : 1-8.
  • 7Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching[C] //Proc IEEE CS Conf Comoputer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1-8.
  • 8Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2001, 23 (11): 1 222-1 239.
  • 9Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2003, 25 (7) : 147- 159.
  • 10Felzenszwalb P F, Huttenlocher D P. Efficient belief propaggation for early vision[J]. Int'l J Computer Vision, 2006, 70(1): 41-54.

同被引文献41

  • 1Scharstein D, Szeliski R. A tamonomy and evaluation of dense two-frame stereo correspondence algorithms[ J]. Interna- tional Journal of Computer Vision, 2002, 47 ( 1 ) :7 - 42.
  • 2Yoon K J, Kweon I S. Locally adaptive support-weight approach for visual correspondence search[ C]. San Diego: Computer Vision and Pattern Recognition, 2005:924 -931.
  • 3Yang Q, Wang L, Yang R. Real-time global stereo matching using hierarchical belief propagation [ C ]. In Proc: British Machine Vision Conf, 2006:989-998.
  • 4Scharstein D,Szeliski R.A taxonomy and evaluationof dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1-3):7-42.
  • 5Delon J.Fine comparison of images and other prob-lems[D].Paris:Laboratoire Traitement et Commu-nication de 1′Information,Ecole Normale Supérieurede Cachan,2004.
  • 6Delon J.Small baseline stereovision[J].Journal ofMathematical Imaging and Vision,2007,28(3):209-223.
  • 7Facciolo G.Variational adhesion correction with im-age based regularization for digital elevation models[D].Uruguay:Instituto de Computacion,Univer-sidad de la Republica Oriental del Uruguay,2005.
  • 8Igual L,Preciozzi J,Garrido L.Automatic low base-line stereo in urban areas[J].Inverse Problems andImaging,2007,1(2):319-348.
  • 9Morgan G L K,Liu Jianguo,Yan Hongshi.Sub-pix-el stereo-matching for DEM generation from narrowbaseline stereo imagery[C]∥Proceedings of IEEE In-ternational Geoscience&Remote Sensing Symposi-um.Boston:IEEE,2008:1284-1287.
  • 10Morgan G L K,Liu Jianguo,Yan Hongshi.Precisesubpixel disparity measurement from very narrowbaseline stereo[J].IEEE Transactions on Geoscienceand Remote Sensing,2010 48(9):3424-3433.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部