期刊文献+

高阶耦合条件下神经振子群活动的随机演化模型

Stochastic evolution model of a neuronal oscillator population with higher order coupling
下载PDF
导出
摘要 研究外刺激和噪声共同作用下耦合神经振子群的活动,着重考察高阶耦合条件下神经网络的相位编码和平均数密度的动态演化。研究结果表明,在高阶耦合条件下,当平均数密度的初始条件与高阶耦合项同阶或者当外刺激的谐波项含有与高阶耦合项同阶项的时候,高阶耦合的作用能够维持神经振子群已形成的多簇同期化状态。否则,高阶耦合的作用将不能维持稳定的多簇同期化运动。刺激条件下的具有高阶耦合的相位神经编码及其演化,是由刺激项和耦合的神经结构所决定的,编码效果是耦合和刺激共同作用的结果。 The activities of a coupled neuronal oscillator population in presence of both external stimulation and noise were studied,and the dynamical evolution of the phase neural coding and the average number density were studied in the neural network when the coupling among oscillators contained higher harmonics.The results indicated that under the condition of higher order coupling,if the initial condition of average number density or the external stimulation contains the same harmonics as those in the higher order coupling,the action of higher order coupling can maintain the already formed multiple-cluster synchronization state of the neuronal oscillator population;otherwise,the effect of higher order coupling cannot maintain the multiple-cluster synchronization activities of the neuronal oscillator population in a stable state;under the condition of stimulation,the phase neural coding and the evolution of the higher order coupled neuronal oscillator population are dependent upon the stimulation and the neural structure of the coupling,and the effect of phase neural coding is the correlative result of the coupling and the stimulation.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第1期1-6,16,共7页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10672057,10872068)
关键词 神经振子群 高阶耦合 平均数密度 相位神经编码 外刺激 neuronal oscillator population higher order coupling average number density phase neural coding external stimulation
  • 相关文献

参考文献10

  • 1Gray C M, Konig P, Engel A K, et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties [ J ]. Nature, 1989, 338 : 334 - 337.
  • 2Tass P A. Phase resetting in Medicine and Biology[ M]. Berlin, Spring-verlag, 1999.
  • 3Winfree A T. The Geometry of Biological Time [ M ]. New York : Springer-Verlag, 1980.
  • 4Kuramoto Y. Chemical Oscillations, Waves and Turbulence [ M]. New York: Springer, 1984.
  • 5Wang Rubin, Gu Fanji, Shen Enhua. Advances in Cognitive Neurodynamics [ M ]. Springer-Verlag,2008.
  • 6Wang Rubin, Zhang Zhikang. Mechanism on brain information processing: energy coding [ M ]. Applied Physical Letters. 89 : 123903,2006.
  • 7Jiao Xianfa, Wang Rubin. Synchronization in Neuronal Population with the Variable Coupling Strength in the Presence of External Stimulus [ M ]. Applied Physical Letters. 88, 203901,2006.
  • 8Wang Rubin, Jiao Xianfa. A Stochastic Nonlinear Evolution Model and Neural Coding on Neuronal Population Possessing variable coupling Intensity in Spontaneous Behavior[ J]. Neurocomputing, 2006,69 ( 7 - 9) : 778 - 785.
  • 9Jiao Xianfa, Wang Rubin. Nonlinear dynamic model and neural coding of neuronal network with the variable coupling strength in the presence of external stimuli [ M ]. Applied Physical Letters. 87:083901,2005.
  • 10Wang Rubin, Zhang Zhikang, Chen Guaurong. Energy Function and Energy Evolution on Neuronal Populations[ J]. IEEE Transactions on Neural Networks, 2008,19 : 535 - 538.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部