期刊文献+

基于逆跳MCMC的贝叶斯分位自回归模型研究 被引量:6

Bayesian Quantile Autoregressive Models Using Reversible Jump MCMC Algorithm
下载PDF
导出
摘要 考虑到传统信息理论方法确定模型存在不足,在贝叶斯理论框架下提出了基于逆跳马尔可夫链蒙特卡罗法确定分位自回归模型阶次的方法。在时间序列服从非对称Laplace分布的条件下,设计了马尔可夫链蒙特卡罗数值计算程序,得到了不同分位数下模型参数的贝叶斯估计值。实证研究表明:基于逆跳马尔可夫链蒙特卡罗法的贝叶斯分位自回归模型能有效地揭示滞后变量对响应变量的位置、尺度和形状的影响。 With the deficiency of traditional modeling method based on information theory,this paper gives a quantile autoregressive model based on Reversible Jump Markov Chain Monte Carlo in the theoretical framework of Bayesian.Supposing that time series subject to asymmetric Laplace distribution,Markov chain Monte Carlo numerical simulation program was designed,and the quantile autoregressive parameters were estimated.Empirical studies have shown that Bayesian quantile autoregression based on Reversible Jump Markov Chain Monte Carlo can effectively reveal the lagged variables effect the location,scale and shape of the response variable.
出处 《统计与信息论坛》 CSSCI 2010年第1期9-14,共6页 Journal of Statistics and Information
基金 国家自然科学基金项目<随机波动预测模型的贝叶斯分析及其在金融领域中研究>(70771038) 教育部人文社会科学规划项目<时间序列计量经济模型的贝叶斯分析及其应用研究>(06JA910001)
关键词 时间序列分析 逆跳MCMC 分位自回归 贝叶斯算法 后验分布 time series analysis reversible jump MCMC quantile autoregression Bayesian algorithm posterior distribution
  • 相关文献

参考文献12

  • 1陈建宝,丁军军.分位数回归技术综述[J].统计与信息论坛,2008,23(3):89-96. 被引量:141
  • 2Koenker R, Xiao Z. Quantile autoregression[J]. Journal of the American Statistical Association,2006, 101(3): 980-990.
  • 3Sisson S A. Trans - dimensional Markov chains: a decade of progress and future perspectives[J]. Journal of the American Statistical Association,2005, 100(3) : 1077 - 1089.
  • 4Green P J. Reversible jump Markov chain monte carlo computation and bayesian model determination[J ]. Biometrika, 1995, 82(4) :711 - 732.
  • 5Yu K. Quantile regression using RJMCMC algorithm[J]. Computational Statistics & Data Analysis, 2002,40(2) :303 - 315.
  • 6Campbell E P. Bayesian selection of threshold autoregressive models[J ]. Journal of Time Series Analysis, 2004, 25(4) :467 - 482.
  • 7Lunn D J, Best N, Whittaker J C. Generic reversible jump MCMC using graphical models[J ]. Statistics and Computing, 2008, DOI : 10. 1007/s1 1222 - 008 - 9100 - 0.
  • 8Lopes H F, Salazar E. Bayesian model uncertainty in smooth transition autoregressions[J]. Journal of Time Series Analysis, 2006, 27(1) :99 - 117.
  • 9Ehlers R S, Brooks S P. Adaptive proposal construction for reversible jump MCMC[J ]. Scandinavian Journal of Statistics, 2008, 35(4) :677- 690.
  • 10Brooks S P, Giudici P, Roberts G O. Efficient construction of reversible jump MCMC protosal distributions- discussion[J]. Journal of the Royal Statistical Society: Series B, Statistical Methodology. 2003, 65(1) : 47- 48.

二级参考文献54

  • 1Taylor J. A quantile regression approach to qstimating the distribution of multi-period returns [J ]. Journal of Derivatives, 1999 (Fall) : 64 - 78.
  • 2Chemozhukov V, Umantsev L. Conditional value at risk: aspects of modelling and estimation [J ]. Empirical Economics, 2001, 3: 271-292.
  • 3Chen M Y,Chen J E. Statistical inferences in quantile regression models: primal and dual aspects [R]. Manuscript, 2001.
  • 4Georios K, Leonidas Z. Conditional autoregression quantiles: estimating market risk for major stock markets [C]. The Second International Symposiunl "Advances in Financial Forecasting", 2005.
  • 5Koenker R, Hallock K F. Quantile regression: an introduction[J]. Journal of Economic Perspectives, 2001,15:143- 156.
  • 6Koenker R. Quantile regression[ M]. Cambridge: Cambridge University Press, 2005, London.
  • 7Chen C, Wei Y. Computation issues on quantile regression [J]. Sankhya, 2005, 67:399-417.
  • 8Yu K, Lu Z, Stander J. Quantile regression: applications and current research area [J]. The Statistician, 2003,52:331 - 350.
  • 9Koenker R, Bassett G W. Regression quantiles [J]. Econometrica, 1978, 46:33 -50.
  • 10Koenker R, Machado A F. Goodness of fit and related inference processes for quantile regression [J]. JASA, 1999, 94:1296 - 1310.

同被引文献44

  • 1TIAN Maozai & CHEN Gemai School of Statistics, Renmin University of China, Beijing 100872, China and Center for Applied Statistics, Renmin University of China, Beijing 100872, China,Department of Mathematics and Statistics, University of Calgary, Canada.Hierarchical linear regression models for conditional quantiles[J].Science China Mathematics,2006,49(12):1800-1815. 被引量:20
  • 2阚先成,黄建兵.不同行业股票流动性的差异性与一致性研究[J].南京财经大学学报,2007(3):46-49. 被引量:5
  • 3Cathy W.S. Chen,Richard Gerlach,D.C.M. Wei.Bayesian causal effects in quantiles: Accounting for heteroscedasticity[J]. Computational Statistics and Data Analysis . 2009 (6)
  • 4Roger Koenker,Quanshui Zhao.L-estimatton for linear heteroscedastic models[J]. Journal of Nonparametric Statistics . 1994 (3-4)
  • 5Bollerslev T.Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics . 1986
  • 6Engle R F.Autogressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica . 1982
  • 7Daniel B. Nelson.Conditional heteroskedasticity in asset returns: A new approach. Econometrica . 1991
  • 8Glosten L R,jagannathan R,Runkle D E.On the relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance, The . 1993
  • 9Zhuanxin Ding,Clive W J Granger,Robert F Engle.A long memory property of stock market returns and a new model. Journal of Empirical Finance . 1993
  • 10Roger Koenker,Quanshui Zhao.Conditional Quantile Estimation and Inference for Arch Models. Econometric Theory . 1996

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部