期刊文献+

用最小二乘配点法解地下水稳定流问题 被引量:2

Application of Least-square Collocation Meshless Method in Simulation of Steady Groundwater Flow
下载PDF
导出
摘要 最小二乘配点无网格法是一种新型高效的无网格法。该方法除节点外又在研究域内引入辅助点,近似函数仍然只通过节点构造,微分方程在所有节点和辅助点上满足。本文将最小二乘配点无网格法应用于非均质多孔介质中的二维地下水稳定流问题,推导了计算格式、编制了相应的计算程序。算例结果表明,最小二乘配点无网格法算法简单,有较高的精度且节省计算量。 The Least square collocation meshless method is a new type of highly efficient meshless method. Except for nodes, a number of auxiliary points are introduced into the research field. Approximation functions are still structured using the nodes, differential equations are satisfied in all nodes and auxiliary points. This method is applied to numerically simulate the 2 - D steady groundwater flow in heterogeneous porous media and the corresponding computer program is developed. The result shows that algorithm of the method is simple and have high accuracy and calculation speed.
出处 《地下水》 2010年第1期15-16,43,共3页 Ground water
关键词 最小二乘配点无网格法 径向基函数 非均质 多孔介质 地下水数值模拟 The least - square collocation collocation method RBF heterogeneous porous media groundwater flow and numerical simulation
  • 相关文献

参考文献4

  • 1张雄、刘小虎、宋康祖等.Least - square collocation meshless method, Int. J. Num. Meth. Engng. ,2001,51 (9) :1089 - 1100.
  • 2Hardy R L. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. , 1971,76 : 1905 - 1915.
  • 3Kansa E J. Multiquadrics--a scattered data approximation scheme with applications to computational fluid dynamics - I.. Comp. Math. Applic. ,1990,19(8/9) :127 - 145.
  • 4Kansa E J. Multiquadrics--a scattered data approximation scheme with applications to computational fluid dynamics -I. I. Comp. Math. Applic. ,1990,19(8/9) :147 - 161.

同被引文献15

  • 1李道西,罗金耀.地下滴灌土壤水分运动数值模拟[J].节水灌溉,2004(4):4-7. 被引量:14
  • 2张耀峰,张德生,武新乾.一维非饱和土壤水分运动的数值模拟[J].纺织高校基础科学学报,2004,17(2):123-127. 被引量:9
  • 3高西宁,郭巍,张玉龙.非饱和土壤水分一维运动的数值模拟[J].安徽农业科学,2006,34(16):3879-3880. 被引量:4
  • 4Duan Yong, Tan Yongji. On condition number of meshless collocation method using radial basis functions [ J ]. Ap- plied Mathematics and Computation, 2006, 172 ( 1 ) : 141-147.
  • 5Hu H Y, Li Z C, Cheng A H. Radial Basis Collocation Methods for Elliptic Boundary Value Problems [ J ]. Com- puters & Mathematics with Applications, 2005, 50 ( 1-2 ) : 289-320.
  • 6Su Lijun, Qin Xinqiang, Miao Baoshan, et al. Radial basis function collocation method with difference for nonlinear convection-dominated diffusion equations[ C]//2010 Sixth International Conference on Natural Computation, Yantai, China, 2010:3023-3027.
  • 7卢小超 吴大鸿.非饱和土人渗的数值模拟.中国水运,2006,4(4):136-137.
  • 8雷志栋 杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报,1982,19(2):141-152.
  • 9Hardy R L.Multiquadric equations of topography and other irregular surfaces[].Chinese Journal of Geophysics.1971
  • 10Kansa,EJ.Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics,Ⅰ, Surface approximations and partial derivative estimates[].Computers and Mathematics With Applications.1990

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部