摘要
本文在概述时间序列模型种类及特点的基础上,以我国鲜奶零售价格为例,示范了进行农产品市场价格短期预测时选择合适时间序列模型的筛选过程。通过平稳性、季节性、趋势性以及异方差等一系列检验后,本研究最终选择双指数平滑、Holt-W inters无季节性模型和ARCH模型共3种方法对我国鲜奶零售价格短期预测进行了应用模拟,结果显示,ARCH模型预测结果精确度最高,Holt-W inters无季节性模型稳定性最好。
Based on summarizing the kinds and characteristics of the time series models and taking our country fresh milk retail price as example, the process of choosing the right time series models for short - term forecast of agricultural products price was demonstrated. Checked by stationarity, seasonal characteristic, trend and heteroskedasticity etc. , the exponential doubles smoothing, Holt- Winters non -seasonal smoothing and the ARCH model were chosen for analyzing the fresh milk retail price. The results indicated that the forecast precision of ARCH model was the best, and the forecast stability of Holt - Winters non - seasonal smoothing was the best.
出处
《山东农业科学》
2010年第1期109-113,共5页
Shandong Agricultural Sciences
基金
农业部"农业信息预警研究"
科技部基础性工作和社会公益研究专项(项目编号:2003DIB2J106)的部分研究成果
中国农业科学院农业信息研究所基本科研业务费"农产品市场价格波动分析及预测研究"(2009J-12)
关键词
农产品
价格预测方法
时间序列模型
鲜奶价格
Agricultural product
Price forecast method
Time series model
Milk price