期刊文献+

两电机变频系统神经网络广义逆内模控制 被引量:3

Internal Model Control for Two-Motor Variable Frequency System Based on Neural Network Generalized Inverse
下载PDF
导出
摘要 为了提高非线性强耦合的两电机变频调速系统的解耦控制性能和鲁棒性能,提出了基于神经网络广义逆系统的二自由度内模控制方法。先对原系统数学模型进行广义逆存在性分析,进而推导出原系统的广义逆数学模型,再用动态神经网络逼近广义逆模型,从而串接在原系统之前组成广义伪线性复合系统,实现系统的解耦线性化与开环稳定,有利于系统的综合。然后对广义伪线性系统引入二自由度内模控制,保证系统的鲁棒稳定性。最后基于S7-300的平台,做了相关的试验研究。结果表明,该方法不但能够很好地实现系统的解耦,而且当系统存在建模误差和负载扰动的情况时,仍能使系统保持高性能的控制。 To improve the decoupling control ability and robustness of nonlinear high coupling two-motor variable frequency speed-regu- lating systems (TVFSS) , the two-degree-of-freedom internal model control (2-DOF IMC )is proposed based on neural network generalized inverse (NNGI). On the basis of reversibility analysis of the original system, the generalized inverse model approximated by the dynamical neural network is cascaded with the original system. Based on the idea of NNGI, the decoupling linearization and open-loop stability of system are reached. The robust stability is improved by introducing 2-DOF IMC to generalized pseudo-linear system. The results of experimental researches based on ST-300 PLC show that the decoupling control of the system can be realized successfully and the high control performance can be ensured when the system has inverse modeling errors and changeable load.
出处 《控制工程》 CSCD 北大核心 2010年第1期42-45,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(60874014) 教育部博士点基金资助项目(20050299009) 江苏省自然科学基金资助项目(BK2007094)
关键词 两电机系统 神经网络 广义逆 内模控制 解耦控制 two motor systems neural network generalized inverse internal model control decoupling control
  • 相关文献

参考文献7

  • 1He F,Wang Q. Synchronization control strategy of multi-motor system based on Profibus network [ C ]. Automation and Logistics, IEEE International Conference,2007.
  • 2Che Y B, Sha L. Variable gain intelligent control of multi-motor synchronization system [ J ]. Hong Kong : The 2nd International Conference on Power Electronics Systems and Applications,2006.
  • 3Dai X Z,Liu G H. Neural Network Inverse Synchronous Control of Two-motor Variable Frequency Speed-Regulating System [ C ]. Ft. Lauderdale: 2006 IEEE International Conference on Networking, Sensing and Control ,2006.
  • 4Wang Q G, Zhang Y, Chu M S. Decoupling internal model control for multivariable system with multiple time delays [ C ]. Philadelphia, Pennsylvanig : American Control Conference, 1998.
  • 5Muramatsu E, Watanabe K. Adaptive internal model control of MIMO systems [ C ]. Fukui : SICE 2003 Annual Conference,2003.
  • 6刘国海,康梅,尤德同,张浩,王富良.两电机同步系统的神经网络逆控制[J].江苏大学学报(自然科学版),2006,27(1):67-70. 被引量:16
  • 7李华,张璇.基于逆系统方法的非线性二自由度内模控制[J].兰州交通大学学报,2006,25(6):1-4. 被引量:3

二级参考文献14

  • 1唐毅谦,王建辉,顾树生.一类非线性离散系统模糊控制器的分析和设计[J].控制与决策,2005,20(9):1056-1060. 被引量:1
  • 2Seung-Ho S, Seung-Ki S. A new tension controller for continous strip processing line [ J ]. IEEE Trans on Industry Applications ,2000,36( 2 ) :633 - 638.
  • 3Namho H, Kwanghee N. A robust load-sharing control scheme for parallel-connected multi systems [ J ]. IEEE Trans on Industrial Electronics, 2000,47 (4) :871 - 879.
  • 4Luo F L. Multiple-page-mapping backpropagation neural network for constant tension control [ J l, IEE Pro Electr Power Appl, 1998,145 (30) :239 - 245.
  • 5Dai X, He D,Zhang X, et al. MIMO system invertibility and decoupling control strategies based on ANN a-order inversion[ J]. IEE Proc-Control Theory Appl,2001,148 :125 - 136.
  • 6Delgado A,Kambhampatl G,Warwlck K.Dynamic recurrent neural network for system identification and control[J].IEE Proc Control Theory Appl.,1995,142(4):307-314.
  • 7Nikolaou M,Hanaganki V.Control of nonlinear dynamical systems modeled by recurrent neural networks[J].AICHE Journal,1993,139(11):1890-1894.
  • 8程代展.非线性系统的几何理论[M].北京:科学出版社,1993.
  • 9Mukul,A,Dale E S.Self-tunning controllers for nonlinear systems[J].Automatics,1987,23(2):209-214
  • 10戴先中,刘军,冯纯伯.连续非线性系统的神经网络α阶逆系统控制方法[J].自动化学报,1998,24(4):463-468. 被引量:36

共引文献17

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部