期刊文献+

离散Markov跳变系统的滚动时域H_∞跟踪控制

Receding Horizon H_∞ Tracking Control for Discrete-time Markov Jump Systems
下载PDF
导出
摘要 针对离散Markov跳变系统,研究滚动时域H∞跟踪控制问题。为便于工程应用,假定系统当前时刻的状态和模态总是可测的,而系统未来时刻的模态是不可知的。利用庞特里亚金极小值原理,构造哈密尔顿函数,求解min-max优化问题,得到当前采样时刻的最优控制作用以及最严峻的外界扰动。控制器的求解可等效为在一组线性矩阵不等式约束条件下,迭代方程的可解性问题。控制律采用滚动时域结构,每次仅施加当前采样时刻计算得到的控制作用,在下一采样时刻将重新计算控制作用。该控制律保证系统在给定H∞扰动抑制水平的情形下,获得最优线性二次型性能指标以及良好的输出跟踪性能。最后仿真示例验证了该方法的可行性和有效性。 To the discrete-time Markov jump linear system, a receding horizon tracking control scheme is presented. In terms of engineering application, the current state and jump mode are assumed to be completely observed, and the future modes are naturally supposed unavailable. The min-max problem is solved by using pontryaging minimum principle through constructing Hamilton function. The optimal control at current sampling time and the worst disturbance are obtained. The controller can be constructed through numerical solution of an iterative equation subject to a set of linear matrix inequalities. Only the first computed control move at current sampling time is implemented. At the next sampling time, the optimization is solved again with new measurement of the plant. The control scheme make the system obtain an optimal linear quadratic cost function and good tracking performance while H∞ disturbance attenuation is also satisfied. The simulation result shows the feasibility and effectiveness of the proposed method.
作者 闻继伟 刘飞
出处 《控制工程》 CSCD 北大核心 2010年第1期67-70,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(NSFC:60974001) 江苏省"六大人才高峰"基金资助项目
关键词 MARKOV跳变系统 滚动时域 跟踪控制 跳变模态 H∞扰动抑制水平 Markov jump systems receding horizon tracking control jump mode H∞ disturbance attenuation
  • 相关文献

参考文献9

  • 1Boukas E K, Shi P, Nguang S K. Robust H∞ control for linear Markovian jump systems with unknown nonlinearities [ J ]. Journal of Mathematical Analysis and Application, 2003, 282( 1 ) : 241-255.
  • 2Xiong J L, Lain J, Gao H J, et al. On robust stabilization of Markovian jump systems with uncertain switching probabilities [ J ] Automatica, 2005, 41(5): 897-903.
  • 3Dong J X, Yang G H. Robust H2 control of continuous time Markov jump linear systems [ J]. Automatica, 2008, 44(5) : 1431-1436.
  • 4Do V J B R, Basar T. Receding horizon control of Markov jump linear systems[ C]. Proc of 1997 ACC,1997.
  • 5Park B G, Lee J W Kwon W H. Receding horizon control for linear discrete systems with jump parameters [ C ]. San Diego: Proceedings of the 36th conference on decision and control, 1997.
  • 6Park B G, Kwon W H, Lee J W. Robust receding horizon control of discrete-time Markovian jump uncertain systems[ C]. IEICE Transactions on Fundamentals, 2001.
  • 7Park B G, Kwon W H. Robust one-step receding horizon control of discrete-time Markovian jump uncertain systems [ J ]. Automatica, 2002, 38( 1 ) :1229-1235.
  • 8陈娇蓉,刘飞.具有饱和执行器跳变系统的鲁棒模型预测控制[J].系统工程与电子技术,2008,30(4):696-699. 被引量:5
  • 9Kwon W H, Hart S. Receding Horizon Control [ M ]. London: Springer-Verlag, 2005.

二级参考文献10

  • 1Hu T S, Lin Z L, Chen B M. Analysis and design for discretetime linear systems subject to actuator saturation[J]. Systems Control Lett. ,2002. 45(2) : 97 - 112.
  • 2Hu T S, Lin Z L, Chen B M. An analysis and design method for linear systems subject to actuator saturation and disturbance[J]. Automatica, 2002, 38(2) :351 - 259.
  • 3Liu H P, Boukas E K, Sun F C, et al. Controller design for Markov jumping systems subject to actuator saturation[J]. Automatica 2006, 42(3) :459 - 465.
  • 4Liu H P, Sun F C, Boukas E K. Robust control of uncertain discrete-time Markovian jump systems with actuator saturation[J]. International Journal of Control, 2006, 79 (7) : 805 - 812.
  • 5do Val J B R, Basar T. Receding horizon control of Markov jump linear systems[C]//Proc.of ACC, 1997 : 3195 - 3199.
  • 6Park B G, Lee J W, Kwon W H. Receding horizon control for linear discrete systems with jump parameters[C]//Proc, of the 36th Int. CDC, 1997:3956-3957.
  • 7Vargas A N, do Val J B R, Costa E F. Receding horizon control of Markov jump linear systems subject to noise and unobserved state chain[C]//Proc of the 43th Con f on Decision and Control, 2004 : 4381 - 4386.
  • 8Park B G, Kwon W H. Robust one-step receding horizon control of discrete-time Markovian jump uncertain systems[J]. Automatica, 2002, 38(1) :1229 - 1235.
  • 9Park B G, Kwon W H, Lee J W. Robust receding horizon control of discrete-time Markovian jump uncertain systems. IEICE Trans. on Fundamentals, 2001, E84-A(9):2272-2279.
  • 10Cao Y Y, Lin Z I., Shamash Y. Set invariance analysis and gainscheduling control for LPV systems subject to actuator saturation [J]. Systems and Control Letters. 2002, 46 (2) : 137 - 151.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部