期刊文献+

线性分类器与BP网络联合诊断变压器故障 被引量:2

Diagnosis of Failed Transformer Using the Combination of Linear Classifier and BP Network
下载PDF
导出
摘要 油中溶解气体分析(DGA)是目前电力充油设备潜伏性故障诊断的重要手段。为了克服传统BP网络及其改进诊断算法所具有的隐层节点数多、收敛时间长的缺陷,减少算法运算量及提高变压器故障诊断的正确率,提出了一种新的诊断算法:线性分类器-BP神经网络(LC-BP)故障辨识方法。通过对变压器大量过热和放电两类典型故障数据的研究,发现其DGA故障数据的特征空间线性可分且分离度较好。基于以上特性,先用线性分类器诊断过热和放电故障,然后利用两个小型BP网络分别进行进一步诊断,得到最终诊断结果。实验结果表明,提出的LC-BP算法具有良好的分类能力,故障诊断的正确率达到94%,且网络结构简单,运算量小,从而为变压器的故障诊断提供了一条新的有效途径。 The dissolved gases analysis ( DGA ) problem of to diagnosing the internal faults of the electrical devices filled with oil is discussed. To overcome the disadvantages of the conventional BP neural network, and to increase the diagnostic correctness rate while lessen the calculation, an algorithm based on linear classifier and BP neural network (LC-BP) is presented. Based on the analysis of DGA data from the failed transformers, the characteristic space of the DGA data can be divided into too-hot space and discharge space efficiently. The faults of whether too-hot or discharge are diagnosed by the linear classifier firstly. Then two little BP neural networks are utilized to determine the eventual faults. The simulation results show that the proposed LC-BP algorithm proposed has good ability of classification, simple structure and little calculation, while the diagnostic correctness rate reaches at 94 %.
出处 《控制工程》 CSCD 北大核心 2010年第1期110-114,共5页 Control Engineering of China
基金 国家自然科学基金资助项目(50277039)
关键词 DGA 线性分类器 BP网络 故障诊断 DGA linear classifier BP neural network faults diagnosis
  • 相关文献

参考文献11

二级参考文献58

共引文献213

同被引文献23

  • 1刘伯颖,孙训俊,李玲玲,王国玲,韩俊杰.灰色模型在触点电器电接触失效预测中的应用[J].电工技术学报,2013,28(S2):418-423. 被引量:15
  • 2倪远平,周建华,李彬华,邹金慧.基于粗糙集理论的电力变压器故障诊断方法研究[J].控制与决策,2004,19(8):943-946. 被引量:18
  • 3邓宏贵,罗安,曹建.灰关联度在变压器故障诊断中的应用[J].控制工程,2005,12(1):25-28. 被引量:6
  • 4邓聚龙.灰色控制系统(第二版)[M].武汉:华中理工大学出版社,1997.
  • 5中华人民共和国国家经济贸易委员会.DL/T 722-2000变压器油中溶解气体和判断导则[S].北京:中国电力出版社,2001.
  • 6Li H J, Zhao Z M, Yu X L. Grey Theory Applied in Non-Sub Sampled Contour Let Transform. The institution of engineering and Technology 2012:264-272.
  • 7Khmais Bacha, Seifeddine Souahlia, Moncef Gossa. Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Support Vector Machine. Electric Power Systems Research,2012(83):73-79.
  • 8Zhi L, Hu J Y, Cao S A. Prediction Technique for Transformer Oil Breakdown Voltage via Multi-parameter Correlation Based on Grey Theory and BP Neural Network,2010 International Conference on Information, Networking and Automation: 179-183.
  • 9M. R. Ahmed, M. A. Geliell, A. Khalil. Power Transformer Fault Diagnosis using Fuzzy Logic Technique Based on Dissolved Gas Analysis. 2013 21st Mediterranean Conference on Control & Automation: 2013, 6.
  • 10马丽叶,卢志刚,常磊,曲畅.基于灰色关联度的输电网经济运行指标体系研究[J].电力系统保护与控制,2011,39(12):22-26. 被引量:28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部