期刊文献+

预不变凸模糊数值函数及其应用 被引量:9

Preinvex fuzzy-valued functions and its application
下载PDF
导出
摘要 利用本文所定义的上(下)半连续,在一种新序意义下讨论了预不变凸模糊数值函数的若干判定定理.特别地,给出了预不变凸模糊数值函数的刻划定理.最后,作为应用,讨论了一类模糊数学规划问题的严格局部最优解和全局最优解存在的条件. Based on the ordering of fuzzy numbers proposed by Goetsehel and Voxman, the definition of upper (lower)semicontinuity of fuzzy-valued function is given, and some judge theorems and a characterization of preinvex fuzzy-valued function are obtained. As an application, the conditions that the fuzzy mathematical programming problems have local strictly optimal solution and global optimal solution are discussed.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期1-5,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10771171) 甘肃省自然科学基金资助项目(0803RJZA108)
关键词 模糊数 上半连续 下半连续 预不变凸性 fuzzy number upper semicontinuity lower semicontinuity preinvexity
  • 相关文献

参考文献10

  • 1NANDA S, KAR K. Convex fuzzy mappings[J]. Fuzzy Sets and Systems, 1992, 48: 129-132.
  • 2SYAU Y R. Generalization of preinvex and B-vex fuzzy mappings[J]. Fuzzy Sets and Systems, 2001, 120: 533-542.
  • 3PANIGRAHI M, PANDA G, NANDA S. Convex fuzzy mapping with differentiability and its application in fuzzy optimization [J]. European Journal of Operational Research, 2007, 185:47-62.
  • 4NOOR M A. Fuzzy preinvex functions[J]. Fuzzy Sets and Systems, 1994, 64: 95-104.
  • 5吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 6GOETSCHEL Jr R, VOXMAN W. Elementary fuzzy calculus[J]. Fuzzy Sets and Systems. 1986, 18: 31-43.
  • 7SYAU Y R, LEE E S. Preinvexity and O1 - convexity of fuzzy mappings through a linear ordering[J].Computers and Mathematics with Applications, 2006, 511 405-418.
  • 8YANG Xin-min, LI Duan. On properties of preinvex functions[J]. J Math Anal Appl, 2001, 256(1): 229-241.
  • 9WU Ze-zhong, XU Jiu - ping. Generalized convex fuzzy mappings and fuzzy variational-like inequality[J]. Fuzzy Sets and Systems, 2009, 160(11): 1590-1619.
  • 10李红霞,巩增泰.模糊数值函数的凸性与可导性[J].西北师范大学学报(自然科学版),2007,43(5):1-6. 被引量:11

二级参考文献5

  • 1吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991.84-96.
  • 2YAN Hong,XU Jiu-ping.A class of convex fuzzy mappings[J].Fuzzy Sets and Systems,2002,129:47-56.
  • 3SYAU Yu-ru.Invex and generalized convex fuzzy mappings[J].Fuzzy Sets and Systems,2000,115:455-461.
  • 4AMMAR E,METZ J.On fuzzy convexity and parametric fuzzy optimization[J].Fuzzy Sets and Systems,1992,49:135-141.
  • 5GOETSCHEL R Jr,VOXMAN W.Elementary fuzzy calculus[J].Fuzzy Sets and Systems,1986,18:31-43.

共引文献26

同被引文献73

  • 1黄应全,赵克全.r-预不变凸函数的两个充分条件[J].重庆师范大学学报(自然科学版),2004,21(4):17-18. 被引量:4
  • 2张成,杨万才.模糊规划的对偶理论[J].辽宁师范大学学报(自然科学版),2005,28(1):1-6. 被引量:6
  • 3包玉娥,吴从炘.广义B-凸模糊映射及其应用[J].模糊系统与数学,2006,20(3):77-82. 被引量:1
  • 4吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 5S. Nanda, K. Kar. Convex fuzzy mappings[J].Fuzzy Sets and Systems. 1992,48:129-132.
  • 6Y. IL Syau,Gextemlizatiort d preinvex and B-vex fuzzy mappings[J] ,Fuzzy Sets and Systems ,2001,120:533-542.
  • 7M. Panigrahi et al. ,Convex fuzzy mapping with differenability and its application in fuzzy optimi,ationlJ]. European Journal of Operational Researeh ,2007 ,185 :47 -62.
  • 8R Goetschel Jr. W Vccamn. Elementary fuzzy calculus[J]. Fuzzy Sets and Systems,1986,18:31-43.
  • 9Yu - Ru Syau, E. Stanley Lee. Preinvexity and $ Whi_{ 1 } $ -Convexity d Fuzzy Mappings Through a Lnear Ordering. Com- puters and Mathematics with Applications 2006,(51) :405 -418.
  • 10Yang X M,Li D. On properties af preinvex finmtions[J].J. Math. Anal. Appl. ,2001,256:229-241.

引证文献9

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部