摘要
本文利用鞍点逼近方法对Black-Scholes模型的积分波动率的二阶变差估计量的估计误差进行分析,得到了相对于中心极限定理更为精细的结果,并且给出了逼近的鞍点算法。结果表明鞍点逼近是中心极限定理的纠正。模拟结果表明鞍点算法给出的估计误差分布相对于正态逼近更合理。该结果在对积分波动率进行统计假设检验时是有意义的。
This paper analyzes the estimation error of the variational estimator for integrated volatility of the Black-Scholes model by using saddlepoint approximation method. A much more accurate result compared with central limit theorem is established, and the saddlepoint algorithm is presented. It turns out that saddlepoint approximation is a correction of normal approximation. Simulation provides evidence of more rationality of the estimation error distribution calculated by saddlepoint algorithm. This is of significance in statistical test for integrated volatility.
出处
《数理统计与管理》
CSSCI
北大核心
2010年第1期62-67,共6页
Journal of Applied Statistics and Management
关键词
鞍点逼近
积分波动率
二阶变差估计
saddlepoint approximation, integrated volatility, variational estimator