期刊文献+

积分波动率二阶变差估计量分析:鞍点算法 被引量:1

Analysis of Variational Estimator for Integrated Volatility:Saddlepoint Algorithm
原文传递
导出
摘要 本文利用鞍点逼近方法对Black-Scholes模型的积分波动率的二阶变差估计量的估计误差进行分析,得到了相对于中心极限定理更为精细的结果,并且给出了逼近的鞍点算法。结果表明鞍点逼近是中心极限定理的纠正。模拟结果表明鞍点算法给出的估计误差分布相对于正态逼近更合理。该结果在对积分波动率进行统计假设检验时是有意义的。 This paper analyzes the estimation error of the variational estimator for integrated volatility of the Black-Scholes model by using saddlepoint approximation method. A much more accurate result compared with central limit theorem is established, and the saddlepoint algorithm is presented. It turns out that saddlepoint approximation is a correction of normal approximation. Simulation provides evidence of more rationality of the estimation error distribution calculated by saddlepoint algorithm. This is of significance in statistical test for integrated volatility.
作者 陆群花
机构地区 五邑大学数理系
出处 《数理统计与管理》 CSSCI 北大核心 2010年第1期62-67,共6页 Journal of Applied Statistics and Management
关键词 鞍点逼近 积分波动率 二阶变差估计 saddlepoint approximation, integrated volatility, variational estimator
  • 相关文献

参考文献4

  • 1Ait-Sahalia Y, Yu J. Saddlepoint approximation tbr continuous-time Markov processes [J]. Journal of econometrics, 2006, 134: 507-551.
  • 2Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in esti- mating stochastic volatility models [J]. Journal of the royal statistical society (B), 2002, 64: 253-280.
  • 3Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps [J]. Journal of financial econometrics, 2004, (2): 1--48.
  • 4Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of political economy, 1973, 81: 637-654.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部