摘要
考虑了具有临界增长边界条件的拟线性椭圆方程,得到的主要结果如下:若f关于u是超线性次临界增长,则当p<r<p*时,应用"山路引理"证明了方程至少存在一个非平凡的弱解;当1<r<p时,应用"对偶喷泉定理"和"集中紧性原理"证明了方程无穷多弱解的存在性。
To consider the critical growth in boundary conditions for the quasilinear problem, the main results are obtained that iffhas superlinear but subcritical growth with respect to u , then as p 〈 r 〈p ^*, there exists at least one nontrivial weak solution by using "mountain pass theorem" ; as 1 〈 r 〈 p , there exists infinitely many weak solutions by using "dual fountain theorem" and "concentration-compactness principle".
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第1期1-4,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(10771223)
中山大学青年教师科研启动基金资助项目(3171914)
教育部留学回国人员科研启动基金资助项目