期刊文献+

具有临界增长边界条件的p-Laplace方程解的存在性 被引量:4

Existence of Weak Solutions for the p-Laplace Equation with Critical Growth in Boundary Conditions
下载PDF
导出
摘要 考虑了具有临界增长边界条件的拟线性椭圆方程,得到的主要结果如下:若f关于u是超线性次临界增长,则当p<r<p*时,应用"山路引理"证明了方程至少存在一个非平凡的弱解;当1<r<p时,应用"对偶喷泉定理"和"集中紧性原理"证明了方程无穷多弱解的存在性。 To consider the critical growth in boundary conditions for the quasilinear problem, the main results are obtained that iffhas superlinear but subcritical growth with respect to u , then as p 〈 r 〈p ^*, there exists at least one nontrivial weak solution by using "mountain pass theorem" ; as 1 〈 r 〈 p , there exists infinitely many weak solutions by using "dual fountain theorem" and "concentration-compactness principle".
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期1-4,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10771223) 中山大学青年教师科研启动基金资助项目(3171914) 教育部留学回国人员科研启动基金资助项目
关键词 P-LAPLACE方程 弱解 临界指数 变分原理 p -Laplace equation weak solutions critical exponent variational principle
  • 相关文献

参考文献10

  • 1ZHAO J H, ZHAO P H. Infinitely many weak solutions for ap -Laplacian equation with nonlinear boundary condition[ J ]. Electron J Differential Equations, 2007, 90 : 1 - 14.
  • 2ZHAO J H, ZHAO P H. Existence of infinitely many weak solutions for the p -Laplacian with nonlinear boundary condition [J]. Nonlinear Analysis : TMA, 2008, 69 : 1343 - 1355.
  • 3BONDER J F, MARTINEZ S, ROSSI J D. The behavior of the best Sobolev trace constant and extremals in thin domains[J]. J Differential Equations, 2004, 198 ( 1 ) : 129 - 148.
  • 4BONDER J F, ROSSI J D. Existence results for the pLaplacian with nonlinear boundary conditions [ J ]. J Math Anal Appl, 2001, 263 (1) : 195 - 223.
  • 5MARTINEZ S, ROSSI J D. Weak solutions for the p - Laplacian with a nonlinear boundary condition at resonance[ J]. Electron J Differential Equations, 2003, 27 : 1 -14.
  • 6PFLUGER K. Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition [J]. Electron J Differential Equations, 1998, 10:1 - 13.
  • 7DRABEK P, ROBINSON S B. Resonance problem for the p-Laplacian[J]. J Funct Anal, 1999, 169:189-200.
  • 8LIEBERMAN G M. Boundary regularity for solutions of degenerate elliptic equations [ J ]. Nonlinear Analysis : TMA, 1988, 12:1203-1219.
  • 9LIONS P L. The concentration-compactness principle in the calculus of variations. The limit case part [J].Rev Mat Iberoamericana, 1985, 1 (1): 145-201.
  • 10LIONS P L. The concentration-compactness principle in the calculus of variations. The limit case part 2 [J]. Rev Mat Iberoamericana, 1985, 1 (2):45-121.

同被引文献16

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部