期刊文献+

一种新型异源图像融合质量评价模型 被引量:5

Novel evaluation model for different-source image fusion quality
下载PDF
导出
摘要 提出了一种基于FNN的异源图像融合质量评价模型。该模型将融合图像的主观评价结论样本集作为模糊期望输出,并利用高斯隶属度函数将多种典型图像融合客观评价指标进行模糊化,作为网络输入样本。通过网络学习,生成评价指标权重与隶属度函数的相关参数,并采用动量因子提高了网络的学习效率。实验结果表明,采用该方法进行异源图像融合质量评价,评价结论符合人眼的观察特性,主、客观评价结论具有较好的一致率,为融合图像自动化评价的实现提供了有效的途径。 An evaluation model for different-source image fusion quality based on FNN is proposed. Subjective evaluation conclusion sample sets of fusion images are considered as output of fuzzy expectation. Several classical objective evaluation indexes are fuzzed by Gaussian membership function as network input samples. Related parameters of evaluation index weight and membership function are generated by network learning. Momentum factor is adopted to improve network learning efficiency. Experimental results show that the evaluation results are reasonable to human eyes. The uniformity ratio of subjective and objective evaluation can reach a high rate ,which provides a valuable method for the realization of automatic fusion image evaluation.
出处 《激光与红外》 CAS CSCD 北大核心 2010年第1期99-102,共4页 Laser & Infrared
基金 国家自然科学基金项目(No.60874106)资助
关键词 图像融合 质量评价 FNN 隶属度函数 异源 image fusion quality evaluation FNN membership function different-source
  • 相关文献

参考文献8

二级参考文献35

共引文献142

同被引文献60

  • 1闫莉萍,刘宝生,周东华.一种新的图像融合及性能评价方法[J].系统工程与电子技术,2007,29(4):509-513. 被引量:29
  • 2C.Pohl, J.L.Van Genderen. Multisensor image fusion i1 remote sensing:concepts, methods and applications[J]l Isn~s_rnsa~i4onal Journal of Remote Sensing, 1998, 19 (5) 1.
  • 3敬忠良,肖刚,李振华.图像融合:理论与应用[M].北京:高等教育出版社,2007.
  • 4Rony Ferzli, Lina J Karam. A no-reference objective image sharpness metric based on the notion of just noticeable blur(JNB) [ J ]. 1EEE Transactions on Image Processing, APRIL, 2009,18 (4) : 717 - 728.
  • 5Rania Hassen, Zhou Wang, Magdy Salama. No-reference image sharpness assessment based on local phase coher- ence measurement [ C ]. IEEE International Conference on Acoustics,Speech & Signal Processing(ICASSP10) , Dal- las,TX, Mar,2010.
  • 6Mingjun Chen, Bovik. No-reference image blur assessment using multiscale gradient Ming-Jun Chen and Alan C [ C ]. EURASIP Journal on Image and Video Processing, 2011.
  • 7C Li, W Yuan, A C Bovik, et al. No-reference blur index using blur comparisons [ C ]. Electronics Letters, 2011,47 ('17) :962-963.
  • 8Lin Zhang, Lei Zhang, Xuanqin Mou, et al. FSIM : A fea- ture similarity index for image quality assessment [ J ]. IEEE Transactions on Image Processing, August, 2011,2 (8) :2378 -2385.
  • 9C Li,A C Bovik, X Wu. Blind image quality assessment using a general regression neural network [ J ]. IEEE Trans. Neural Networks, 2011,22 (5) :793 - 799.
  • 10M C Morrone, R A Owens. Feature detection from local energy [ J ]. Pattern Recognit. Lett. , 1987, 6 (5) : 303 -313.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部