期刊文献+

基于蚁群优化的网络路由算法及其NS仿真 被引量:1

Research on Network Routing Algorithm Based on Ant Colony Optimization and its NS Simulation
下载PDF
导出
摘要 随着网络日趋复杂,求解实际的网络路由问题成为了一个NP-难问题。蚁群优化算法作为一种启发式算法近年来被广泛的用于求解复杂的NP-难问题,在对蚁群优化算法进行研究的基础上,给出了基于蚁群优化的网络路由算法—AntNet算法的原理及其NS仿真。仿真结果表明,该算法很好地利用了蚁群算法的正反馈性,能依概率随机且有效选择下一个节点,从而使网络流量按路径费用好坏,分散在多条可能的路径中,达到平衡流量、减小拥塞现象出现的目的。 As the network becoming more complicated, solving the real network routing problem becomes a NP-hard problem. Ant colony optimization algorithm as one of the heuristic algorithm in recent years is used for solving the complicated NP-hard problem. Based on the research of ant colony optimization algorithm, a simulation of AntNet is provided, which is a network routing algorithm based on ACO, on network simulator NS--2. The simulation results shows that the AntNet algorithm has well utilized positive feedback of ACO and can effectively choose the next node in accordance with probability, thus enable the network flow disperse in many possible routes, which achieves the goal of the balanced flow and reduces the congestion.
出处 《计算机与数字工程》 2010年第1期6-8,110,共4页 Computer & Digital Engineering
基金 中国博士后基金项目(编号:20080431384)资助
关键词 网络路由 蚁群优化 ANTNET NS network routing, ant colony optimization, AntNet, NS
  • 相关文献

参考文献7

  • 1Di Caro, Marco Dorigo. AntNet; A mobile agents approach to adaptive routing[M]. Belgium: Universit Libre de Bruxelles, 1997.
  • 2孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 3Zeng Yuan-yuan, He Yan-xiang. Ant routing algorithm for mobile ad-hoc networks based on adaptive improvement[C]// Proceedings of Wireless Communications, Networking and Mobile Computing, 2005. 9, Volume 2. 678-681.
  • 4多里戈,施蒂茨勒.蚁群优化[M].张军,等译.北京:清华大学出版社,2007:215-232.
  • 5V. Laxmi, Lavina Jain, M. S. Gaur. Ant Colony Optimization based Routing on ns--2 [C]// Proceedings of International Conference On Wireless Communication and Sensor Networks, WCSN 2006.
  • 6陈慕齐,齐欢,陈迎春.基于蚁群算法的试验流程优化研究[J].海军工程大学学报,2006,18(3):38-42. 被引量:5
  • 7R. Montemanni, L. Gambardella. Swarm approach for a connectivity problem in wireless networks[C]// Proceedings of IEEE Swarm Inlelligence Symposium, 2005:265-272.

二级参考文献16

  • 1姜桦,李莉,乔非,吴启迪.蚁群算法在生产调度中的应用[J].计算机工程,2005,31(5):76-78. 被引量:24
  • 2徐震浩,顾幸生.不确定条件下的flow shop问题的免疫调度算法[J].系统工程学报,2005,20(4):374-380. 被引量:19
  • 3龙飞,孙富春.改进的蚁群算法及其在卫星网络路由计算中的应用[J].海军工程大学学报,2005,17(6):26-31. 被引量:1
  • 4DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the ttraveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1): 53-66.
  • 5DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics,1996,26(1):1-13.
  • 6PILAT M L, WHITE T. Using genetic algorithms to optimize ACS-TSP[A]. Proceedings of Ant Algorithms: Third International Workshop, ANTS 2002[C]. Brussels, Belgium, 2002. 282-287.
  • 7WHITE T, PAGUREK B, Oppacher F. ASGA: Improving the ant system by integration with genetic algorithms[A]. Proceedings of the Third Annual Genetic Programming Conference[C]. Morgan Kaufmann, 1998. 610-617.
  • 8STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer System, 2000, 16(8): 889-914.
  • 9ROSENKRANTZ D J, STEARNS R E, LEWIS P M. An analysis of several heuristics for the traveling salesman problem[J].SIAM J Comput, 1977, 6:563-581.
  • 10TSPLIB [EB/OL]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html, 2003.

共引文献46

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部