期刊文献+

纳米间隙电极的制备及应用 被引量:2

Preparation and Application of Nanogap Electrodes
下载PDF
导出
摘要 综述了国内外纳米间隙电极的制备方法,其中主要包括扫描隧道显微镜法、Hg滴法、机械断裂法、微加工法、电迁移法、电化学法等,对每种方法的制备过程及原理进行了较详细的介绍;对每种纳米间隙电极在分子电子学方面的应用,特别是对利用纳米间隙电极测定单分子的I-V性质、制作分子整流器和分子晶体管等工作做了简单介绍。突出了纳米间隙电极在分子器件研究中的重要作用;最后讨论了分子电子学所面临的一些问题并对该领域的发展方向作出了展望。 The fabrication methods of nanogap electrodes are reviewed, mainly including scanning tunneling microscopy (STM), Hg drop method, mechanically controllable break junction (MCBJ) method, micro-fabrication technique, electromigration and electrochemical methods, and so on. The fabrication process and principle are introduced in detail and the applications of nanogap electrodes in molecular electronics iare,also presented, including determining I-V characteristic by nanogap electrodes, preparing molecular rectifiers and molecular transistors, etc. The important role of nanogap electrodes in the study of molecular device is emphasized. The problems and development trend in this field are also reviewed.
出处 《微纳电子技术》 CAS 北大核心 2010年第1期50-55,63,共7页 Micronanoelectronic Technology
基金 国家自然科学基金(26075077) 河北大学青年基金(2009-154)
关键词 纳米间隙电极 分子电子学 分子器件 制备 应用 nanogap electrode molecular electronics molecular device preparation application
  • 相关文献

参考文献27

  • 1ZHITENEV N B, ERBE A, BAO Z N, et al. Molecular nano-junctions formed with different metallic electrodes [J]. Nanotechnology, 2005, 16 (4) : 495- 500.
  • 2ANDREWS D Q, SOLOMON G C, van DUYNE R P, et al.Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species [ J]. J Am Chem Soc, 2008, 130 (51): 17309- 17319.
  • 3XU B Q, TAO N J. Measurement of single-molecule resis-tance by repeated formation of molecular junctions [J]. Science, 2003, 301 (5637): 1221-1223.
  • 4WEIBEL N, BLASZCZYK A, yon HANISCH C, et al. Redoxactive catechol-functionalized molecular rods: suitable protection groups and single-molecule transport investigations [J]. Euro J Org Chem, 2008, 2008 (1): 136- 149.
  • 5LI X L, HIHATH J, CHEN F, et al. Thermally activated electron transport in single redox molecules [J]. J Am Chem Soc, 2007, 129 (37): 11535-11542.
  • 6HIHATH J, CHEN F, ZHANG P M, et al. Thermal and electrochemical gate effects on DNA conductance [J]. J Phys: Condens Matter, 2007, 19 (21): 215202-215221.
  • 7SLOWINSKI K, MAJDA M. Mercury-mercury tunneling junctions. Part Ⅱ. Structure and stability of symmetric alkanethiolate bilayers and their effect on the rate of electron tunneling [J]. J Electroanal Chem, 2000, 491 (1-2): 139-147.
  • 8TRAN E, DUATI M, VIOLETTA F, et al. Experimental approaches for controlling current flowing through metalmolecules-metal junctions [J]. Adv Mater, 2006, 18 (10) : 1323 - 1328.
  • 9REED M A, ZHOU C, MULLER C J, et al. Conductance of a molecular junction [J]. Science, 1997, 278 (5336): 252 - 254.
  • 10PORATH D, BEZRYADIN A, de VRIES S, et al. Direct measurement of electrical transport through DNA molecules [J]. Nature, 2000, 403 (6770): 635-638.

二级参考文献14

  • 1欧阳生德,易院平,耿华,帅志刚.扩展苯基衍生物分子器件的电子输运的理论研究[J].高等学校化学学报,2007,28(5):952-954. 被引量:1
  • 2Zhitenev N. B. , Erbe A. , Bao Z. , et al.. Nanotechnology[J], 2005, 16(4) : 495--500
  • 3Xu B. Q., Tao N. J.. Science[J], 2003, 301(5637) : 1221--1223
  • 4Fuhrer M. S. , Nygard J. , Shih L. , et al.. Science[J] , 2000, 288(5465) : 494-497
  • 5Otsuka Y., Naitoh Y., Matsumoto T., et al.. Nanotechnology[ J], 2004, 15(11 ) : 1639--1644
  • 6Bohler T. , Grebing J. , Mayer-Gindner A. , et al.. Nanotechnology [ J ] , 2004, 15 (7) : S465--S471
  • 7Park H. K., Lim A. K. L., Alivisatos A. P., et al.. Applied Physics Letters[J], 1999, 75(2) : 301--303
  • 8Xiang J. , Liu B. , Liu B., et al.. Electrochemistry Communications[J], 2006, 8(4) : 577--580
  • 9Dong X. D., Xia Y. , Zhang B. L. , et al.. Nanotechnology[J], 2007, 18(39) : 395502
  • 10Boussaad S., Tao N. J.. Applied Physics Letters[J], 2002, 80(13) : 2398--2400

共引文献5

同被引文献27

  • 1TSUTSUI K, NAKATA M, MORITA M, et al. Novel fabri- cation technologies of planar nano-gap electrodes for single molecule evaluation [J]. Current Applied Physics, 2007, 7 (4) : 329-333.
  • 2NAGASE T, GAMO K, KUBOTA T, et al. Direct fabrica- tion of nano gap electrodes by focused ion beam etching [J]. Thin Solid Films, 2006, 499 (1/2): 279-284.
  • 3KASHIMURA Y, NAKASHIMA H, FURUKAWA K, et al. Fabrication of nano-gap electrodes using electroplating tech nique [J]. Thin Solid Films, 2003, 438/439: 317- 321.
  • 4MORPURGO A F, MARCUS C M, ROBINSON D B. Con- trolled fabrication of metallic electrodes with atomic separation [J]. Appl Phys Lett, 1999, 74 (14): 2084-2086.
  • 5LI C Z, HE H X, TAO N J. Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching [J]. Appl Phys gett, 2000, 77 (24) : 3995-3997.
  • 6KERVENNIC Y V, van DER ZANT H S J, MORPURGO A F, et al. Nanometer-spaced electrodes with calibrated separation [J]. Appl Phys Lett, 2002, 80:321 -323.
  • 7HE H X, BOUSSAAD S, XU B Q, et al. Electrochemical fa- brication of atomically thin metallic wires and electrodes separated with molecular scale gaps [J]. Journal of Electro analytical Chemistry, 2002, 522 (2): 167-172.
  • 8DONG X D, XIA Y, ZHU G Y, et al. Molecular sensing with the tunnel junction of an Au nanogap in solution [J]. Nanotechnology, 2007, 18 (39) : 395502-1-395502- 6.
  • 9QING Q, CHEN F, LI P G, et al. Finely tuning metallic nanogap size with electrodeposition by utilizing high-frequen- cy impedance in feedback [J]. Angew Chem Int Ed, 2005, 44 (47): 7771-7775.
  • 10XIANG J, LIU B, WU S T, et al. A controllable electro chemical fabrication of metallic el cctrodes with a nanometer/ angstrom sized gap using an electric-double layer as feedback [J]. AngewChemInt Ed, 2005, 44 (8) : 1265-1268.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部