期刊文献+

基于目标变换模型的跟踪方法研究

Study of Tracking Method Based on Object Transform Model
下载PDF
导出
摘要 图像目标跟踪是计算机视觉领域中富有挑战性的工作之一,但已有的算法大多都存在一定的局限性。针对目标相关匹配方法难以处理图像序列中目标所具有的连续性的尺度变化、旋转、变形等问题,通过在相邻两帧图像之间建立目标相对变化关系的数学模型,并依据该变换关系的数学描述及一定的相关测度对跟踪问题进行最优化建模,将目标跟踪问题转化为目标变换模型参数的最优化求解问题,最后利用L-M算法对上述优化问题进行求解,实现目标跟踪。实验结果表明,该方法对发生连续性平移、尺度、旋转、变形等变化的目标具有良好的跟踪精度,且对图像质量要求不高。 Image object tracking is one of the most challenged problems in the computer vision field, most of which have some defficency. Focusing on the problem that the methods of template matching can't resolve the continuous scale, rotation and distortion of the object in the image sequence. By modeling object's relative change relations between the neighboring frames,and based on the discription of motion transform and the stated correlation measure, the tracking problem is translated into an optimization problem. Using L - M algorithm to resolve the optimization problem and the tracking is achieved. The experiment results show that the method is of good accuracy for tracking the object with scale,rotation and distortion and robust to the degradation of image.
出处 《现代电子技术》 2010年第2期118-121,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60872153) 国防科技大学校预研资助项目
关键词 目标跟踪 目标变换模型 最优化模型 L—M算法 object t racking object transform model optimization model L - M algorithm
  • 相关文献

参考文献9

二级参考文献41

  • 1王艳萍.实时视频图像相关跟踪的算法的改进与实现[J].舰船科学技术,2004,26(3):57-59. 被引量:6
  • 2朱永松,国澄明.基于相关系数的相关跟踪算法研究[J].中国图象图形学报(A辑),2004,9(8):963-967. 被引量:38
  • 3倪军,袁家虎,吴钦章.序列图像中跟踪目标的一种简单算法[J].半导体光电,2005,26(B03):140-142. 被引量:4
  • 4张桂林,徐捷,郑云慧.频域相关技术在图像匹配中的应用[J].模式识别与人工智能,1997,10(1):87-92. 被引量:8
  • 5Porikli F. Achieving Real-Time Object Detection and Tracking Under Extreme Conditions[J]. Journal of Real-time Image Processing, 2006, 1(1): 33-40.
  • 6Comaniciu D., Ramesh V. and Meet P. Real-time Tracking of Non-Rigid Objects using Mean Shift[J]. IEEE Computer Vision and Pattern Recognition, 2000, Ⅱ: 142-149.
  • 7Tuzel O., Porikli F., and Meer P. Region covariance: A fast descriptor for detection and classification[C]//In proc. 9th European Con.. on computer vision, Graz, Austria, 2006: 589-600.
  • 8Porikli F., Tuzel O., Meer P. Covariance Tracking using Model Update Based on Lie Algebra[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2006: 728-735.
  • 9Forstner W., Moonen B. A metric for covariance matrices. Technical report, Dept. of Geodesy and Geoinformatics, Stuttgart University, 1999.
  • 10[1]何斌,马天予.Visual C++数字图像处理.北京:人民邮电出版社,2003.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部