摘要
提出了一种基于模糊聚类和最小二乘估计方法的模糊辨识方法。该方法是基于模糊聚类,计算给定样本在各类中的隶属度,并给出输入变量的隶属度函数。利用递推最小二乘估计辩识模糊模型的后件参数,本文给出了详细的的算法。为了验证该方法的有效性,本文给出了Box-Jenhins数据的辨识结果。
This paper proposes a method of fuzzy identification based on fuzzy clustering and recursive least square algorithm.This fuzzy clustering produces the membership grade of each datum point as well as the membership functions.Recursive least square algorithm can be used to identify the parameters of conclusion polynomials.This paper gives a detailed algorithm.To demonstrate the advantages of the proposed mehtod,it is used to identify the well known Box Jenkins data set,and the result is shown at the end of the paper.
出处
《系统仿真学报》
CAS
CSCD
1998年第4期61-64,共4页
Journal of System Simulation
基金
博士点专项基金
哈尔滨工业大学基金
关键词
模糊辨识
模糊聚类
系统辩识
模糊规划
Fuzzy identification Fuzzy clustering Recursive least square estimation System identification