期刊文献+

k-广义酉矩阵与k-广义Hermite矩阵的张量积和诱导矩阵

Tensor Products and the Induced Matrix about k-generalized Unitary Matrix and k-generalized Hermite Matrix
下载PDF
导出
摘要 利用矩阵的张量积和诱导矩阵的性质,得到了有限个k-广义酉矩阵的张量积和诱导矩阵为k-广义酉矩阵,有限个k-广义Hermite矩阵的张量积和诱导矩阵为k-广义Hermite矩阵.并把2007年候谦民等结果中广义酉矩阵推广到k-广义酉矩阵,广义Hermite矩阵推广到k-广义Hermite矩阵. Using the property of tensor product and induced matrix, both the tensor product and induced matrix with the finite k-generalized unitary matrices are obtained, and obtained also are both the tensor product and induced matrix with the finite k-generalized Hermite matrices. In this paper, the author extends the results of the matrix of the finite generalized unitary matrices derived by Hou Qian-min etc. (2007) to k-generalized unitary matrices, and the generalized Hermite matrix to k-generalized Hermite matrices.
作者 郑建青
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2010年第1期56-58,共3页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 宁波市自然科学基金(2006A610032)
关键词 k-广义Hermite矩阵 k-广义酉矩阵 张量积 诱导矩阵 k-generalized Hermite matrix k-generalized unitary matrix tensor product induced matrix
  • 相关文献

参考文献7

二级参考文献30

  • 1杨虎.矩阵的泛正定与广义逆偏序[J].系统科学与数学,1993,13(3):270-275. 被引量:22
  • 2王秀玉,姜兴武,李慧玲.对称双边对角矩阵的性质及广义逆[J].东北师大学报(自然科学版),2005,37(3):128-131. 被引量:3
  • 3佟文廷.广义正定矩阵[J].数学学报,1984,27(6):801-801.
  • 4Hom R A, Johnson C R. Matrix Anaiysis [M] Cambridge: Cambridge university Press, 1985.
  • 5Lin Wenwei, Volker Mehrmann. Canonical forms for Hamiltonian and symplectic matrices and pencils [J].Linear Algebra and its Appilcatons, 1999, 302-303. 469-533.
  • 6Wanzhexian. Geometry of Hamilton matrices and its applications H[J] Algebra colloquium. 1996, 3(2): 107-116.
  • 7Tam Bitshum, Yang Shangjun. On matrices whose numerical ragnes have circular or weak circular symmetry [J]Linear Algebra its Applications, 199, 302-303. 139-221.
  • 8Wei Yiming. A characterization and representation of the generalized inverse A and its applications [J] .Linear Algebra and its Appilcations 1998, 280. 87-96.
  • 9Wei Musheng. Equivalent conditions for generalized inverses of products[J]. Linear Algebra and its Applications, 1997, 266. 347-363.
  • 10姜家辉.矩阵理论基础[M].大连:大连理工大学出版社,1997.1-277.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部