期刊文献+

二次罚函数的可分化方法 被引量:1

Decomposition Methods in Quadratic Penalty Function
下载PDF
导出
摘要 可分方法用于将一个复杂的大规模优化问题分解成各个子问题进行求解。本文对可分优化问题给出两种可分方法,即分别将辅助问题原理(APP)方法和分块协调下降(BCD)方法应用于二次罚函数方法(QPM),并提出相应的QPM+APP算法和QPM+BCD算法,使得在求解可分优化问题时仅需要修正罚因子。最后给出了两个算例,通过与文献[1]中的ALR+APP和ALR+BCD算法作比较来求解,所得的计算结果说明本文给出的两种算法是具有有效性的。 The decomposition methods are used to solve large-scale optimization problems by decomposing them into sub-problems. In this paper we present two decomposition methods for solving separable optimization problems. We apply the Auxiliary Problem Principle (APP) method and the Block Coordinate Descent (BCD) method to the Quadratic Penalty Method (QPM) respectively and also present the corresponding QPM + APP Algorithm and QPM + BCD Algorithm. Meanwhile, In Ref. 1, for a separable problem the authors apply the APP and BCD method to the Augmented Lagrangian Relaxation (ALR)method and solve the problem, so both the dual variable and the penalty parameter must be updated. But we only update the penalty parameter by the present methods. Two numerical examples are given to show the usefulness of the presented methods by comparing with the ALR + BCD and the ALR + BCD Algorithm in Ref. 1.
出处 《重庆师范大学学报(自然科学版)》 CAS 2010年第1期11-15,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10171118)
关键词 可分优化问题 可分化方法 二次罚函数方法 辅助问题原理方法 非线性高斯-赛德尔方法 separable optimization decomposition methods quadratic penalty method auxiliary problem principle method nonlinear Gauss-Seidel method
  • 相关文献

参考文献16

  • 1Rehran C, Heredia F J. Unit commitment by augmented Lagrangian relaxation: testing two decomposition approaches [J]. Journal of Optimization Theory and Applications,2002,112(2):295-314.
  • 2Mahey. Decomposition methods for mathematical programming[M]//Pardalos P, Resende M G C. Handbook of applied optimization. Oxford : Oxford University Press ,2002.
  • 3Engehnann B. Convexification and decomposition of separable problems[ J]. Optimization, 1992,26:61-82.
  • 4Chen G,Teboulle M. A proximal-based decomposition method for convex minimization problems [ J 1- Mathematical Programming, 1993,64:81-101.
  • 5Mahey P. Separarable augmented Lagrangians for the decomposition of large convex programs[ J 1. Investigation Operativa, 1995,5 : 1-26.
  • 6Ruszczynski A. On convergence of an augmented lagrangian decomposition method for sparse convex optimization [ J]. Mathematics of Operations Research, 1995,20 (3) :634-656.
  • 7Gabay D, Mercier B. A dual algorithm for the solution of nonliear variational problems via finite-element approximations [ J]. Computprs and Mathematics with Applications 1976,2 : 17-40.
  • 8Glowinski, R. Marrocco A. Sur 1 approximation par elements finis dordre un. et la resolution par penalisation-dualitedhne classe de problemes de Dirichlet nonlieaires [ J ]. Revue Francaise d'Automatigue Informatique et Rechercheperationelle 1975,2.41 -76.
  • 9Bcrtsekas D P,Tsitsiklis J N . Parallel and distributed computation : numerical merhodss [ M ]. New Jersey : Prentice-Hall, 1989.
  • 10Antonio J C, Roberto M, Enriqne C, et al. Decomposition techniques in mathematical programming[ M ]. New York: Engineering and Science Application,2006.

二级参考文献15

  • 1吴至友,白富生.一种新的求全局优化最优性条件的方法[J].重庆师范大学学报(自然科学版),2006,23(1):1-5. 被引量:9
  • 2Levitin E. Reduction of generalized semi-infinite programming problems to semi-infinite or piece-wise smooth programming problems[ C]. Germany: University of Trier,2001.
  • 3Weber G W. Generalized semi-infinite optimization : On some foundations [ J ]. Vychislitel' nye Tekhnologii, 1999,4:41-61.
  • 4Polak E, Royset J O. On the use of augmented Lagrangians in the solution of generalized semi-infinite min-max problems [ J ]. Computational Optimization and Applications,2005,31:173-192.
  • 5Rockafellar R T. Augmented Lagrange multiplier functions and duality in nonconvex programming [ J ]. SIAM Journal on Control and Optimization, 1974,12:268-285.
  • 6Royset J O, Polak E, Kiureghian A D. Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems[ J]. SIAM J Optim,2003,14 : 1-34.
  • 7Stein O. First order optimality conditions for degenerate index sets in generalized semi-infinite programming [ J ]. Math Oper Res, 2001,26:565-582.
  • 8GOH C J,YANG X Q. A Nonlinear Lagrangian Theory for Nonconvex Optimization [ J ]. Journal of Optimization Theory and Applications ,2001,109( 1 ) :99-121.
  • 9RUBINOV A M,GLOVER B M,YANG X Q. Modified Lagrange and Penalty Functions in Continuous Optimization [ J ].Optimization. 1999,46:327-351.
  • 10HUANG X X,YANG X Q. Nonlinear Lagrangian for Multiobjective Optimization and Applications to Duality and Exact Penalization[J]. SIAM J Optimization,2002,13(3):675-692.

共引文献2

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部